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Abstract
This review article provides an overview of structurally oriented, experimental datasets that can
be used to benchmark protein force fields, focusing on data generated by nuclear magnetic
resonance (NMR) spectroscopy and room temperature (RT) protein crystallography. We discuss
why these observables are useful for assessing force field accuracy, how they can be calculated
from simulation trajectories, and statistical issues that arise when comparing simulations with



experiment. The target audience for this article is computational researchers and trainees who
develop, benchmark, or use protein force fields for molecular simulations.

1 Introduction
It is a truth universally acknowledged that a research group in possession of a good force field
must be in want of a benchmark. While the earliest computer simulations of biomolecules
explored sub-nanosecond phenomena1–3, recent advances in computing hardware4 and
simulation algorithms5 have enabled atomistic simulations to study processes that occur on
biological timescales. Molecular simulation can now make quantitative predictions about protein
conformational changes6,7, ligand binding8–10, protein folding11,12, and assembly of multi-protein
complexes13 that can generate hypotheses to guide wet lab experiments. Hypotheses from
molecular simulations have found utility in improving our understanding of protein functions,
elucidating molecular mechanisms of human disease, and making it easier and faster to design
small molecule therapies that target proteins.

Importance-weighted sampling methods14, including molecular dynamics and Monte Carlo
simulations, make predictions about molecular phenomena by sampling conformations from a
protein’s Boltzmann-weighted ensemble, where the Boltzmann weight is based on a potential
function. As long as the simulation samples a sufficiently large number of conformations, the
accuracy of the resulting predictions is limited by the accuracy of the energy model. While
knowledge-based heuristic approaches15 and approaches based on deep learning16 have been
incredibly successful at predicting the structures of proteins in low energy conformations17, the
study of phenomena such as conformational changes and ligand binding requires accurate
sampling of conformations away from energy minima. On the other hand, highly accurate but
computationally expensive quantum chemical methods are often too slow for phenomena on
biologically relevant timescales. Therefore, the simulation community has a continued interest in
a class of parameterized, physics-based energy models—called force fields—that use simple
approximations of interatomic interactions and can be evaluated quickly to yield conformational
energies and atomic forces.

Force field development is a time-consuming and iterative process because experimental
datasets for training and validating force field parameters for proteins are sparse, and because it
requires optimization in a high-dimensional parameter space. As the histories of modern force
fields used to simulate proteins have been reviewed extensively elsewhere, we present only a
very general picture of these histories here18–22. Protein force fields developed in the 1980s and
1990s typically derived force field parameters from quantum chemical calculations or from neat
liquid bulk properties of small molecule analogs of protein fragments23–25. These parameters
were validated by monitoring the root mean square deviation of atomic coordinates from a
structural model of a protein derived from a crystal diffraction experiment over the course of a
simulation trajectory. The increased availability of structural data on proteins from x-ray
diffraction and nuclear magnetic resonance experiments enabled more detailed evaluations of
the conformational ensembles produced by protein force fields, and deficiencies identified in
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these assessments led to bespoke protein-specific corrections to the parameters used to model
protein backbone and sidechain torsions26–31.

While modern protein force fields have been fruitfully applied, they are still approximations to the
true quantum mechanical energies of proteins’ conformations. Additionally, research groups that
develop force fields pursue different strategies for deriving parameters that prioritize
often-conflicting goals. Individual protein force fields are thus expected to model some features
of protein conformational ensembles better and others less well. Assessments of protein force
fields that evaluate these diverse features are vital to the iterative cycle of force field
development. In this review article, we describe experimental datasets that interrogate a range
of structural and dynamical features of proteins and that can be used to benchmark the
accuracy of protein force fields. In particular, we focus on datasets consisting of observables
that provide detailed information about protein conformational ensembles under conditions
similar to those of interest for protein simulations. Second, we consider only datasets consisting
of peptides and non-membrane proteins, without ligands or cofactors.

The target audience for this review article is computational researchers and trainees who
develop, benchmark, or use protein force fields for molecular simulations. We thus assume
familiarity with molecular dynamics techniques, force field terms, and the basics of protein
structure. We do not assume familiarity with experimental techniques or interpretation of results
from structural biology experiments.

The remainder of the review is organized into three sections. Section 2 describes experiments
using nuclear magnetic resonance (NMR) spectroscopy, and Section 3 describes experiments
using room temperature (RT) crystallography. In each of these two sections, we first review
types of observables provided by the experiments, why they are useful for interrogating protein
conformational dynamics, and how they can be calculated from simulation trajectories. Then, we
describe specific datasets containing measurements of these observables for peptide or protein
systems. Finally, Section 4 touches on statistical issues that arise when comparing simulations
with experiment.

2 Nuclear magnetic resonance (NMR) spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy measures the responses of nuclear magnetic
moments in a strong external magnetic field to perturbations by weak external magnetic fields
oscillating at the resonant frequency of the nuclei. The observed responses are sensitive to the
local magnetic fields at the nuclei, so NMR spectroscopy provides information about the local
chemical environments of atoms and hence about the conformational distributions and
dynamics of the molecules they belong to.

NMR is applicable to nuclei with an odd number of nucleons and hence nonzero nuclear
spin—such as 1H, 13C, 15N, 19F, and 31P—because these possess a magnetic dipole moment. In
the presence of a strong external magnetic field, this dipole precesses around the external field,
much as a spinning top precesses around a downward gravitational field. The angular frequency
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of the precession, which is called the Larmor frequency, is proportional to the strength of the
magnetic field at the nucleus with a proportionality constant characteristic of the nuclear isotope.
If a second, weak magnetic field that oscillates near the Larmor frequency is applied, the axis of
precession will rotate away from the direction of the strong external field. An NMR spectrometer
detects this transverse magnetization by measuring the electrical current it induces in a coil of
wire. Although the value of the Larmor frequency is determined chiefly by the strong external
magnetic field, the local electronic structure, which is influenced by  through-bond and
through-space interactions, near each nucleus modulates the field felt by the nucleus and hence
its Larmor frequency, so NMR probes the local environment of the nucleus. Additionally,
magnetization can be transferred to nearby nuclei via through-space interactions, so NMR can
report on the relative dispositions in space of pairs of nuclei. These two effects give NMR
spectroscopy its sensitivity to the structure and dynamics of proteins.

NMR observables have several useful features that have led to their adoption as targets for both
training and validation of protein force fields32. First, NMR experiments are typically performed in
laboratory conditions that are approximated closely by the desired setup for most simulation
applications, namely dilute aqueous solution. Note, however, that NMR studies are often done
at low pH, and it is essential that simulations meant for comparison against NMR data assign
pH-appropriate protonation states of titratable residues. Second, in contrast with typical x-ray or
neutron crystallography experiments, NMR spectroscopy can provide useful information about
disordered proteins, i.e., proteins that do not fold into a well-defined structure that can
crystallize. Furthermore, whereas other methods applicable to disordered proteins, such as
small angle x-ray scattering, provide only low-resolution structural information, NMR
observables can report on specific structural features that are closely related to specific force
field terms, e.g. the torsional energy terms for a particular dihedral angle. Finally, because NMR
observables are averages over an ensemble that includes deviations from native structures,
comparisons to NMR spectroscopy can reveal native state biases in protein force fields that are
more difficult to diagnose by comparison to crystal diffraction experiments.

Here, Section 2.1 discusses NMR observables that can be used to assess the accuracy of
molecular simulations and hence of the force fields used in simulations. The observables
considered are chemical shifts, scalar couplings (also known as J-couplings), residual dipolar
couplings, the nuclear Overhauser effect (NOE), spin relaxation, paramagnetic relaxation
enhancement, and salt bridges. Section 2.2 then presents specific experimental NMR datasets
that are well suited for evaluating simulations.

2.1 NMR Observables

2.1.1 Chemical shifts

2.1.1.1 General principles
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The chemical shift of a nucleus is the difference of its Larmor frequency from that of the same
isotope in a reference compound. The chemical shift of a nuclear spin probes the degree to
which it “feels” the externally imposed magnetic field. This is determined by its electronic
environment, which in turn is controlled by the details of the local molecular structure. In a
protein, one can consider the chemical shift of a nucleus as having a baseline offset resulting
from its local covalent connectivity and bond hybridization, and an additional shift determined by
both its local geometry (bond lengths, bond angles, and dihedral angles) and through-space
interactions resulting from electric fields, hydrogen bonds, and the proximity of chemical groups
that contain substantial magnetic anisotropy such as aromatic rings33–35. The sensitivity of a
given nucleus to each of these influences depends on its chemical identity (atomic number),
covalent structure (bond hybridization) and chemical environment.

A number of empirical algorithms have been developed to predict the chemical shifts of protein
backbone atoms for a given set of three-dimensional coordinates. These algorithms are
implemented in software packages that include Sparta+, Shiftx2/Shiftx+, Camshift, PPM, and
UCB-Shift36–43. These empirical chemical prediction algorithms are trained on databases of
proteins for which both high resolution x-ray structures and solution backbone NMR chemical
shift assignments are available. They take protein coordinates as inputs, and output a chemical
shift prediction (𝞭Prediction) for each backbone nucleus (C𝝰, C𝝱, C’, N, HN, H𝝰) in a protein
structure. The development of chemical shift prediction algorithms has revealed the
dependence of the chemical shift of each backbone nucleus on a number several
conformational features of proteins. The structural features of proteins that have been found to
have the largest influence on the backbone nuclei of a given residue i are the 𝛟/𝛙/𝛘 dihedral
angles of that residue; the 𝛟/𝛙/𝛘 angles of neighboring residues (i-2,i-1,i+1,i+2); the distances
and orientations of nearby aromatic rings and other chemical groups with substantial magnetic
anisotropy; the presence and geometry of hydrogen bonds; the proximity of polar and charged
nuclei; and the solvent exposure of the residue. Accordingly, chemical shift predictions can be
estimated as a combination of additive effects:

𝞭Prediction=𝞭Random Coil+𝞭Backbone + 𝞭Sidechan+𝞭Ring Currents +𝞭Hydrogen Bonds+𝞭Electric Fields𝞭Solvent

where 𝞭Random Coil is a baseline offset that is determined for each nucleus in each amino acid44–47,
𝞭Backbone reflects the 𝛟/𝛙 angles for the residue and its neighboring residues, 𝞭Sidechain reflects
sidechain 𝛘 angles, 𝞭Ring Currents results from magnetic anisotropy effects from nearby aromatic
rings, 𝞭Hydrogen Bonds results from hydrogen bonding interactions, 𝞭Electric Fields is the contribution of
nearby charged and polar nuclei, and 𝞭Solvent is the effect of exposure to solvent.

The main determinant of backbone chemical shifts are local dihedral angles, and different nuclei
are sensitive to different dihedral angles to different extents. For example, for a given residue
number i, C𝝰 and C𝝱 shifts are most sensitive to the 𝛟 and 𝛙 angles of that residue (𝛟i/𝛙i), C’
shifts are most sensitive to the 𝛙 angles of residue i and the following (i+1) residue (𝛙i/𝛙i+1), and
N shifts are more sensitive to the 𝛘1 angle of that residue and the 𝛙 angle of the preceding (i -1)
residue (𝛘1i,𝛙i-1). Proton shifts are more sensitive to non-bonded interactions than carbon and
nitrogen atoms. HN and H𝝰 shifts are both very sensitive the presence of aromatic ring currents,
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HN shifts are particularly sensitive to hydrogen bond geometries, and H𝝰 shifts are more
sensitive to the presence of electric fields.

The field of empirical protein backbone chemical shift prediction is relatively mature, with a high
degree of consensus in the predictions of algorithms published in the last 20 years. The
SHIFTS, SHIFTX, and PROSHIFT algorithms, published from 2001 to 2003, represented
significant advances in the accuracy of empirical protein backbone chemical shift predictions
from protein structures, with SHIFTX generally producing the most accurate predictions on
protein structures not contained in its training databases and requiring only a few seconds to
predict all backbone shifts in a protein. Subsequently, the program SPARTA, published in 2007,
provided a small improvement in prediction accuracy, with somewhat slower calculation times.
The program Camshift, published in 2009, produced comparable accuracy to SHIFTX and
SPARTA, but utilizes interatomic distance-based equations that can be evaluated in
milliseconds and are differentiable with respect to atomic coordinates, enabling the
computationally efficient incorporation of chemical shifts as structural restraints in MD
simulations. Taken together, SPARTA, SHIFTX, and Camshift represented important milestones
in the field, as their predictions were accurate enough to enable the calculation of accurate
protein structures using only NMR chemical shifts as restraints, when combined with molecular
mechanics force fields or knowledge-based potential energy functions48–52. These predictors
were also found to be sensitive to the conformational fluctuations of proteins observed in MD
simulations, and were utilized to generate and validate protein conformational ensembles that
accurately model the dynamics of proteins53–56, and to guide the optimization of protein force
field torsion terms57,58.

A more recent generation of empirical shift predictors, including SPARTA+37,
SHIFTX2/SHIFTX+36, PPM_One39, UCB-Shift40, and Graph NMR41, were developed using
machine learning techniques. These predictors provide improved accuracy and have very
similar accuracy to one another. They typically produce very similar results in practical
applications such as the validation of MD ensembles, the fitting of force field corrections, the
calculation of protein structures and structural ensembles, and the reweighting of MD
trajectories. Despite the accuracy of these methods, their errors are still an order of magnitude
larger than experimental uncertainties in chemical shifts, so experimental uncertainties can
generally be neglected when comparing calculation to experiment.

Prior to the publication of the most recent generation of NMR chemical shift predictors,
SPARTA+, and SHIFTX+ had been widely used to assess the accuracy of simulations and in the
generation of protein conformational ensembles from chemical data, so a number of published
force field benchmarks relied on these predictors. It is notable that empirical prediction
algorithms trained on databases of protein structures, which can produce predictions for all
backbone atoms in proteins in milliseconds to seconds, have consistently provided more
accurate predictions than those obtained by using quantum mechanical calculations to compute
chemical shifts, although these can take orders of magnitude more computational time59–64.
Although programs have been developed to calculate NMR chemical shifts of protein
side-chain atoms, these predictors have generally been less accurate than backbone chemical
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shift predictors, and less applicable for the applications described above36,39,65,66. Their lower
accuracy presumably stems from a smaller database of training data, a smaller spread in the
experimental chemical shifts for each atom type, and the high conformational variability of
sidechain positions in protein structures.

2.1.1.2 Evaluation of simulations by direct comparison of computed and measured
chemical shifts

Deviations between chemical shifts predicted from MD trajectories and experimental shifts are
sensitive indicators of errors in MD ensembles relating to the structural features discussed
above. Accordingly, NMR chemical shift predictions are routinely used to assess the accuracy of
MD simulations, and torsion terms in protein force fields have been parameterized by optimizing
the agreement between experimental and simulated chemical shifts57,58.
Backbone chemical shift predictions, computed from MD ensembles, with large deviations from
experiment, i.e., >1-2x the average predictor accuracy for a given backbone atom type (e.g. C𝝰)
as assessed on a predictor’s training databases, indicate substantial inaccuracies in the
average structural features of the ensemble. Large deviations between predictions and
experiments can occur when residues sample an incorrect dihedral distribution, and the largest
deviations generally reflect incorrect secondary structures and/or side-chain rotamers. Large
chemical shift deviations can also be observed, particularly for proton shifts, when aromatic
side-chains are positioned incorrectly in MD ensembles, so that aromatic ring current effects do
not match experiment.  Smaller deviations in predicted shifts can result from over-populated or
under-populated hydrogen bond interactions in MD ensembles, or inaccurate distributions of
charged groups around a given atom.  In the case of disordered proteins, backbone chemical
shifts are very sensitive to the presence of partially populated secondary structure elements,
and deviations from experiment can indicate that MD ensembles over- or underestimate
residual helical, ppII, or 𝝱-sheet propensities.

When comparing calculated and experimental backbone chemical shifts, one should keep the
following considerations in mind.

1. Chemical shift prediction algorithms remain subject to random errors, so sporadic errors
are to be expected throughout the protein. A string of residues with several atoms having
large deviations between predicted and experimental shifts probably is sampling
spurious conformations.

2. The chemical shifts of the backbone nuclei (atom types C𝝰, C𝝱, C’, N, HN, H𝝰) of each
residue type have large baseline offsets that are determined by chemical identity and
their covalent structure. This baseline offset is often referred to as a “random coil”
chemical shift, because it approximates the chemical shift expected for the backbone
atom type of a given residue if it freely sampled all accessible conformational space44–47.
The random coil shifts of a given backbone atom type (e.g. C𝝱) can vary more strongly
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across residue types (e.g., Val, Ser) than does the chemical shift of the same backbone
atom type (e.g. C𝝱) across residues of a given type (e.g. Val), due to environmental
variations. For example, the random coil shifts of C𝝱 nuclei can vary by as much as 50
ppm among amino acid types, while the standard deviation of measured C𝝱 shifts within
individual residue types is typically only 3 to 5 ppm67,68. As a result, it can be highly
misleading to visualize correlations and report correlation coefficients between
experimental chemical shifts and shifts predicted from MD simulations, as most of the
magnitude in deviation between different residues can be explained by differences in
their baseline 𝞭Ranom Coil values. Indeed, extremely high correlation coefficients (close to
1.0) can be obtained by comparing experimental chemical shifts to database random coil
chemical shift values, without utilizing any structural information. A more informative
visualization of the accuracy of chemical shift predictions from an MD simulation is
provided by comparing the deviations between predicted and experimental shifts for
each residue type. Alternatively, one can compare predicted and experimental
“secondary” chemical shifts, which subtract the random coil chemical shifts values from
both experimental and predicted shifts, to indicate regions of systematic disagreement
with experimental values.

3. Empirical chemical shift predictions depend on many structural features, so one cannot
be sure what a given prediction error means for a single atom. For example, a deviation
of 1.5 ppm for a N atom may result from a sidechain populating an incorrect rotamer or
an aromatic group being incorrectly positioned.

4. Chemical shift prediction error is sequence- and conformation-specific and so should not
be used to compare the accuracy of simulations of two different proteins or of two
different regions of one protein. For example, chemical shift prediction errors for
beta-sheet proteins are substantially higher than for alpha-helical proteins41, so a
simulation of a beta-sheet protein may yield worse agreement with experimental
chemical shifts than an equally accurate simulation of an alpha-helical protein. In
contrast, when one protein is simulated with multiple force fields, the accuracy of the
chemical shift predictions is a clear indication of the relative accuracy of the simulations
and hence of the force fields. Scalar couplings (Section 2.1.2) do not have this limitation.

5. The average prediction accuracy on the database of x-ray structures used to train a
given predictor provides a reasonable baseline to identify problematic simulations. For
example, the standard deviation of Ca shift predictions made by Sparta+ is 0.94 ppm for
its training database, so a contiguous stretch of residues with Ca prediction errors
greater than 1.5 ppm probably does not reflect the true solution ensemble of this region,
whereas a simulation where the Ca shift predictions are less than 1.00 ppm is relatively
reliable.

6. In principle, chemical shift predictions based on accurate, thermalized, conformational
ensembles should lead to more accurate chemical shift predictions than predictions
made on static protein structures. However, the most accurate chemical shift prediction
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algorithms are trained against static, high-resolution x-ray structures.  As a result, some
amount of conformational averaging is “baked in” to these prediction algorithms; that is,
chemical shifts predicted from static conformations already implicitly account for the
solution-phase averaging over conformations. This fact may help account for the fact
that chemical shifts predicted based on static high-resolution x-ray structures are often
(though not always53–56) more accurate than predictions from MD ensembles. However,
the greater accuracy obtained with static structures does not necessarily reflect
inaccuracies of the MD ensembles. Indeed, MD simulations that yield excellent
agreement with other NMR observables, such as NMR scalar couplings or residual
dipolar couplings (see below) may produce less accurate chemical shift predictions than
static high-resolution x-ray structures.53,55,58

7. Comparisons between simulated and experimental chemical shifts are particularly
informative regarding the accuracy of simulations of intrinsically disordered proteins
(IDPs) and peptides. The lack of stable tertiary structure in such systems means that
through-space interactions are largely washed out so that chemical shift predictions are
dominated by backbone dihedral angles, which are the most accurately parametrized
and least noisy relationships in backbone chemical shift predictors69. As a result, MD
ensembles that are known to give accurate backbone dihedral distributions, based on
other types of NMR data such as scalar couplings (Section 2.1.2) and residual dipolar
couplings (Section 2.1.3) frequently achieve chemical shift predictions with RMSDs
substantially lower than the average prediction errors obtained on training databases of
x-ray structures of folded proteins. For example, Ca chemical shift predictions obtained
from simulations of IDPs and peptides that agree with orthogonal NMR data or
secondary structure populations estimated from circular dichroism frequently have
RMSDs from experiment less than 0.5 ppm, whereas average Ca prediction errors for
folded proteins average ~1 ppm. Indeed, simulations of IDPs with state-of-the art force
fields regularly achieve prediction RMSDs a factor of 2 lower than the average predictor
errors observed on databases of folded proteins, with a substantial dynamic range that
correlates well with the agreement of orthogonal experimental data56,58,69,70. Therefore,
when several different force fields yield predicted chemical shifts for disordered proteins
with RMSDs lower than typically observed for folded proteins, differences across the
force fields being tested should not be dismissed as being equivalently within prediction
error but instead should be regarded as meaningful and informative.

8. There is not a one-to-one mapping between conformational distributions and chemical
shifts, and many different conformational ensembles can produce identical agreement
with experiment71–73. For example, the same CA chemical shift prediction can be
obtained from many different phi/psi dihedral distributions; and ensembles with
extremely different phi/psi dihedral distributions for a given residue can produce identical
chemical shift predictions for a CA atom if it is exposed to an aromatic ring current in one
ensemble and not the other. Nonetheless, if many chemical shift predictions are wrong,
then there is very likely something wrong with the predicted conformational distribution.
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9. Different programs for predicting chemical shifts tend to yield very similar results, so the
choice of method is not expected to have much effect on conclusions. However, it is
recommended to use the same method consistently across the trajectories being
compared.

2.1.1.3 Evaluation of force fields via structural properties derived from chemical shifts
Measured chemical shifts can be used to derive structural information, such as the helicity of a
peptide in solution. Simulations can then be evaluated based on their agreement with these
experimentally derived structural data. This approach avoids the complications of predicting
chemical shifts from simulations (Section 2.1.1.2). Instead, it relies on the availability of reliable
methods to map from chemical shifts to structural properties. Two examples of structural models
that can be used in this way, helical propensities and stabilities of salt bridges and salt bridge
analogs, are now considered.

Accurate protein force fields should be able to model the preferences for proteins to adopt
particular secondary structures. Helical propensity in a particular sequence context is often
modeled using the expected fraction of time that a particular non-terminal residue adopts an
alpha-helical backbone conformation, and the fractional helicity of a residue can be measured
because alpha helical residues form backbone hydrogen bonds that alter the chemical shift of
the carbonyl carbon in 13C-labeled proteins74. Assuming a two-state helix-coil transition, the
helical fraction can be calculated using

where , , and are the 13C chemical shifts observed in the experiment, in the
reference helical state, and in the reference coil state. Meanwhile, a simulation can be analyzed
to provide the fraction of time each residue is in a helical conformation, based on its backbone
dihedral angles, and the results can be compared with the results inferred from chemical
shifts75. Alternatively, researchers can fit simulated conformations to a helix-coil transition model
such as the Lifson-Roig model76 and then compare model parameters to those fit to
experimental data75.

Another important characteristic of protein force fields is the ability to accurately model the
formation of salt bridges—pairs of amino acids whose oppositely charged side-chains are within
hydrogen bonding distance77. When a salt bridge is formed, the presence of the anionic
sidechain alters the chemical shift of nitrogen in the cationic side chain, and this perturbation
can be measured in 15N-labeled proteins or in small molecule analogs of these side chains.
Similar to the helical fraction, the fraction of salt bridge formation can be calculated from the
chemical shifts observed in the experiment, along with reference shifts measured in the
presence and absence of the salt bridge. Simulations can then be analyzed to provide the
fraction of time the salt bridge is present based on geometric criteria for hydrogen bonding
between the charged side chains.
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2.1.2 Scalar couplings

2.1.2.1 General principles
NMR scalar couplings, also known as indirect couplings or J-couplings (units = Hz), are
through-bond, electron-mediated, spin-spin couplings78,79. The magnetic field of a nuclear spin
modifies the Hamiltonian of nearby electrons. Because the spins of bonded electrons are
paired, this results in an indirect coupling of nuclear spin-states across bonds. These couplings
can propagate through multiple bonds, and three-bond couplings are of particular interest
because they provide a readout of the dihedral angle of the central bond. Accordingly,
three-bond 3J-coupling constants have been utilized extensively in the conformational analysis
of small molecules79 and peptides80 since the initial discovery of the Karplus relationship78, also
called the Karplus equation, which relates the magnitude of the 3J-coupling constant between
two nuclear spins to the intervening dihedral angle :

Here the Karplus coefficients—A, B, and C—depend on the identities of the coupled nuclei (e.g.,
13C, 1H) and their local chemical environments, including bond hybridizations, bond lengths,
bond angles, and the electronegativities of nearby substituents81. Karplus equation coefficients
used in conformational analyses are generally empirically determined, based on the
measurement of 3J-coupling constants in molecules of known structure and then transferred to
analyze the dihedral angles between nuclei in similar chemical environments78,79,81–83. For a
given pair of coupled nuclei, the experimentally observed 3J coupling is the probability-weighted
average of their instantaneous coupling.

In proteins and peptides, the 3J-couplings between backbone amide protons and alpha protons
(3JHN-Ha) report on the φ dihedral angle of the peptide backbone and thus distinguish between
alpha and beta secondary structure. These couplings were adopted as structural restraints in
early NMR protein structure calculations84. The values of the Karplus coefficients for these 3J
coupling constants have been the subject of frequent reexamination and scrutiny83,85–90,
including studies that examine the consequences of harmonic motion and conformational
dynamics83,86,87,90,91. Although 3JHN-Ha are the most frequently measured and reported 3J-couplings
for the protein backbone, five additional coupling constants also report on the phi dihedral
angle92: 3JHN-C’, 3JHN-Cb, 3JC’(i-1)-Ha, 3JC’(i-1)-C’, and 3JC’(i-1)- Cb.  It has also been shown that 1-bond (1J)
scalar couplings, such as 1JCa-Ha and 1JCa-Cb, are sensitive to the psi angle of protein
backbones93–95. The  chi1 angles of protein sidechains can be analyzed via the following
3J-couplings: 3JHa-Hb, 3JN-Hb’, 3JC’-Hb, 3JHa-Cg, 3JN’-Cg, and 3JC’-Cg

96,97. Additionally, 3HJN-C′ hydrogen bond
scalar couplings (scalar couplings between protein backbone nitrogen and carbonyl atoms in
different residues that are mediated through hydrogen bonds)  provide quantitative information
about hydrogen bond geometries98. Once Karplus coefficients are known, no specialized
software is required to compute scalar couplings for a protein structure or MD trajectory. One
simply needs to calculate the angles of interest and use them to predict their scalar couplings
with the Karplus relationship and the appropriate Karplus coefficients.
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2.1.2.2 Evaluation of force fields using scalar couplings
3J-couplings can be computed from MD simulations as \frac{1}{N}3J(φ_i), where i indexes the N
simulation snapshots and 3J(φ) is given by the Karplus Relationship (above), and the results can
be compared with the corresponding measured 3J-couplings. One may therefore use 3J-coupling
data to test30,99–101 and parameterize27,30,58,75,102,103 simulation force fields. In such calculations,
one must choose between “static” and “dynamics-corrected” Karplus coefficients. Static
coefficients are obtained from empirical fits of ensemble-averaged solution data to
high-resolution x-ray structures and therefore do not explicitly account for the complexities of
conformational distributions during parametrization. Dynamics-corrected Karplus coefficients are
obtained from empirical fits that seek to account for the distributions of dihedral angles of the
molecule in solution, using a variety of approaches including single and multiple well harmonic
motion models as well as fitting coefficients to rotamer population distributions obtained from
orthogonal data83,86,87,90,91,97.

A recent study58 examined the accuracy of 3J-couplings computed with long MD simulations
using several sets of Karplus coefficients and seven different force fields, for a large set of NMR
data spanning folded and disordered proteins. The static 3JHN-Ha Karplus coefficients from Vogeli
et al83 (A=7.97, B=-1.26, C=0.63) and the static 3JC’(i-1)-C’ Karplus coefficients from Li et al89

(A=1.61, B=-0.93, C=0.66) produced the lowest RMSD values from experiment on average
across force fields and protein systems. The dynamics-corrected Karplus coefficients from Lee
et al90 gave similar trends in accuracy across force fields, but larger average deviations from the
experimental couplings. In principle, Karplus coefficients could be derived not empirically but
from quantum calculations for specific conformations, thus avoiding the question of
conformational averaging. However, Karplus coefficients derived in this way have generally
given worse agreement with experiment than those derived empirically83,86,87,90,91,97.

When interpreting the NMR scalar couplings calculated from MD simulations, it is essential to
consider the large uncertainty in the Karplus coefficients. This is frequently done using a
value58,103:

where and are the ith experimental and computed J-couplings, respectively, and
is the uncertainty in the predictions made by the Karplus equation, i.e. the RMSD

between predicted and measured scalar couplings for the fit of the Karplus parameters. A
value less than 1.0 indicates agreement within the estimated uncertainty. It is also worth
recalling the words of Martin Karplus79: “the person who attempts to estimate dihedral angles to
an accuracy of one or two degrees does so at …[their] own peril”.
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2.1.3 Residual dipolar couplings

2.1.3.1 General principles
The direct interaction of the magnetic dipoles associated with two nuclear spins leads to an
experimentally measurable coupling (units = Hz), known as a dipolar coupling. The magnitude
of the dipolar coupling between the nuclear spins of atoms A and B for an instantaneous
configuration and orientation of the molecule is given by

where depends on the identities of the nuclei and the distance between them, and θAB is
the angle between the magnetic field imposed by the NMR instrument and the vector
connecting the two atoms. The second line re-expresses the quantity in parentheses in terms of
rAB, the unit vector joining the two nuclei, defined in the internal coordinates of the molecule, and
the alignment tensor A, which relates the internal coordinate system to the the lab-frame
magnetic field. In a solution of freely tumbling molecules, θ takes on all possible values with
equal probability, and the observed dipolar couplings—which are averages over molecules and
time—are zero.

However, dipolar couplings can report on the structure and conformational dynamics of proteins
and other macromolecules if the molecules can be even weakly aligned relative to the
instrument’s magnetic field, because then DAB no longer averages to zero. Such alignment may
be achieved by linking the protein to prosthetic groups that interact with the field or by placing
the protein in an aqueous liquid crystal formed by, for example, bicelles104,105 or anisotropic
compression of acrylamide gels106. The dipolar coupling measured in a weakly aligned sample is
called a residual dipolar coupling (RDC). RDCs are often measured between atoms that are
directly bonded—in proteins, often an amide proton and nitrogen resulting in a 1DNH RDC— but it
is also possible to measure RDCs between nuclei that are not directly bonded. Although the
alignment procedure could in principle perturb the protein’s conformational ensemble, studies
looking for this effect have not reported significant perturbations. One may compute the
alignment vector from a single protein conformation with available software107, or from an MD
trajectory of a folded protein by applying singular value decomposition to the unit vectors of the
bonds of interest following alignment of the MD frames.

2.1.3.2 Evaluation of MD simulations using residual dipolar couplings
In order to obtain a structural interpretation of a protein’s RDCs to benchmark a molecular
simulation of the protein, one must estimate the alignment tensor, A. For MD simulations of
folded proteins, it is often reasonable to assume that the internal motions of the protein and the
alignment are mostly decoupled or that any coupling does not contribute substantially to the
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RDCs. In this case, one may keep the concept of an alignment tensor, noting that this should be
fitted over the full ensemble rather than using a single structure. The procedure and equations
used in this fitting are the same as for rigid proteins and typically rely on SVD. With a set of
experimental RDCs and a simulation one can fit the five independent parameters of the
alignment tensor. For unfolded proteins, flexible peptides, and intrinsically disordered proteins, it
is not possible to fit an average alignment from the data because the alignment varies across
conformations. Therefore most analyses use a physical model to predict the alignment tensor
for each conformation and use this to calculate per-frame RDCs that can then be averaged.
These physical models can be tested against data for folded proteins, where the alignment can
be determined from experiment. Such tests suggest that the predicted alignments are accurate
enough to be useful, in particular when alignment is dominated by steric interactions between
the macromolecule and the alignment medium. Among the different methods for predicting
alignment tensors, the PALES software is probably the most commonly used107. While it is
possible to predict alignment for the full chain, sometimes local alignment over short stretches of
ca. 15 residues is used instead.

2.1.4 Nuclear Overhauser effect spectroscopy

2.1.4.1 General principles
The nuclear Overhauser effect (NOE) is the change in intensity of the resonance peak of one
nucleus that occurs when the resonance of a nearby nucleus is saturated by radio frequency
irradiation. The NOE is a through-space, rather than through-bond, effect, and dies off as r -6,
where r is the internuclear distance. It is typically detectable only when an ensemble average of
the distance is less than ~6 Angstroms. The strength of an NOE between two atoms is often
interpreted as placing an upper bound on the mean interatomic distance; e.g.  strong (<2.5 Å),
medium (<3.0 Å), weak <4.5 Å108. NOE’s are measured in a nuclear Overhauser effect
spectroscopy (NOESY) experiment, a so-called 2-dimensional study where one dimension is the
irradiation frequency and the other is the readout frequency.  NOESY experiments usually focus
on hydrogen nuclei (protons), because using carbons or nitrogens would require isotopic
labeling.

2.1.4.2 Evaluation of MD simulations using NOESY
NOE data can be used to check the accuracy of a protein simulation by computing the mean
interatomic distances corresponding to the available NOEs and checking how well they comply
with the distance bounds determined from the NOE strengths. Due to subtleties related to the
different timescales of overall molecular rotation and motions within the molecular frame of
reference, the time-averaged distance between two atoms in a molecular dynamics simulation is
usually computed as <r-3>-1/3 , rather than <r-6>-⅙. Alternatively, one may use the simulation to
calculate the NOESY correlation functions themselves, rather than derived properties, but this
approach is more complex109.  In some cases, the experimental study may not distinguish
individual hydrogen atoms, either because they are genuinely indistinguishable (e.g. the protons
in a methyl group), or because one cannot assign the stereospecific hydrogen atoms (e.g. the
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β-hydrogens in an amino acid side chain). These cases may either be omitted from the
evaluation, or addressed by “center average”  or other approaches110,111.

2.1.5 Spin relaxation

2.1.5.1 General principles
Spin relaxation is the decay of a nucleus’s spin magnetization back to its equilibrium distribution
following a radiofrequency pulse at the nucleus’s resonant frequency, that both tips the spin
away from its precession around the axis of the external field and also makes the spins precess
coherently. Spin relaxation is typically characterized by two exponential decay processes.
Spin-lattice relaxation, or T1 relaxation, is the decay of the component of the nuclear spin
magnetization parallel to the external magnetic field, conventionally taken to be the z axis. This
is caused by interaction of the aligned spins with the environment. This longitudinal component
of the magnetization, , decays according to

where is the longitudinal component of the magnetization at thermal equilibrium and T1 is
the decay constant for the spin-lattice relaxation. Spin-spin relaxation or T2 relaxation is the
decay of the net magnetization transverse to the external magnetic field due to dwindling
coherence of the phases of the spins of individual nuclei. The transverse component of the
magnetization, , decays according to

where T2 is the decay constant for the spin-spin relaxation. For most systems, spin-spin
relaxation is faster than spin-lattice relaxation; i.e., T1 > T2. Spin relaxation times, i.e. T1 and T2,
can be detected for NMR-active isotopes, in proteins typically 15N in labeled backbone amides
or 13C and 2H labeled side chains. Although protein force fields are usually benchmarked against
backbone spin relaxation times, it is also possible to to use side chain data112.

Spin relaxation times are determined by both dynamics and the conformational ensemble
sampled over time. However, they depend in a complex manner on the magnetic field strength,
and their connection to molecular dynamics is non linear, so intuitive interpretation is often not
straightforward. Standard spin relaxation time analyses typically employ the simplifying
Lipari-Szabo approach113–117, where the timescales of overall protein rotation and internal
motions are assumed to be widely separated. One then quantifies the orientational freedom of a
bond vector, such as that of a 13C-H bond, in the protein frame of reference in terms of a
generalized order parameter. The order parameter ranges between 0 and 1118, where 0 implies
free isotropic rotation of the bond vector, and 1 implies a complete absence of freedom within
the molecular frame of reference.
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2.1.5.2 Evaluation of MD simulations using spin relaxation
Spin relaxation times can be calculated directly from MD simulations using the Redfield
equations119–121, instead of using the approximations of the Lipari-Szabo model73,120. However,
the results often deviate from experiment due to an incorrect rate constant for overall protein
rotational diffusion that results from errors in the viscosity of water in the simulations, and/or
from insufficiently sampled simulations120,122. In such cases, the protein internal motions can be
compared to order parameters and fast time scales extracted from experiments using the
Lipari-Szabo model113–117,123,124, or the effect of overall motions can be manually corrected using
available mathematical tools112,119,120,125,126. On the other hand, sufficiently long simulations127 with
water models having the correct viscosity can reproduce experimental spin relaxation times
without any further corrections73. This is useful for proteins with disordered regions for which the
rotational diffusion tensor cannot be defined and the number of relevant rotational timescales is
not known a priori. Thus, spin relaxation times can contribute to the evaluation of MD
simulations, and can be uniquely informative for proteins with long disordered linkers73.

2.1.6 Paramagnetic relaxation enhancement

2.1.6.1 General principles
Paramagnetic relaxation enhancement (PRE) is an increase in the NMR relaxation rate of a
nuclear spin due to its dipolar interactions with unpaired electrons at a paramagnetic site; i.e.,
an atom with an unpaired electron128. Like an NOE, this effect dies off as r-6. However, because
the magnetic moment of an unpaired electron is much larger than that of a nucleus, PRE ranges
over much longer distances, to as far as ~25 Angstroms or more. Some metal atoms in
metalloproteins are paramagnetic and generate measurable PREs.  For other proteins,
paramagnetic sites can be artificially introduced by using chemical reactions to attach extrinsic
labels, called spin-labels.  This is usually done by engineering proteins to have just a single,
reactive cysteine residue which can then be reacted with a nitroxide-containing compound such
as MTSL or a chelating agent, such as an EDTA derivative, carrying a paramagnetic metal.
Although it is possible to measure the PRE for longitudinal (R1) NMR relaxation rates, most
applications focus on transverse relaxation rates (R2), and these will be the focus of this section.
PRE depends both on distribution of distances and the timescales of motion of the protein,
along with the location and dynamics of the spin-label. Its strength, range, and strong
dependence on distance make it particularly suitable to detect and quantify transient and
low-probability interactions.

In a typical PRE experiment, one measures the transverse relaxation rates of various groups in
both the spin-labeled (paramagnetic) protein and in the same protein without the spin label (the
diamagnetic protein).  It is possible to measure PREs of different nuclei and chemical groups,
but they are most commonly measured at backbone amides. When a nitroxide spin-label is
used, the diamagnetic protein can be generated simply by reducing the nitroxide with ascorbic
acid. The PRE for nuclei across the protein is obtained from the difference between the spin
relaxations of these two measurements. Alternatively, because the PRE leads to
line-broadening, one may estimate the PRE from the ratio of the intensities (peak heights) in
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e.g. heteronuclear single quantum correlation spectra of the paramagnetic and diamagnetic
samples.  While this has commonly been done and may lead to useful insights, the analysis of
such data comes with additional uncertainty and assumptions so that one should, if possible,
measure the PRE via relaxation rates.

2.1.6.2 Evaluation of MD simulations using PRE
The PRE has been used most extensively to benchmark MD simulations of disordered proteins
with weak and/or transient interactions, but can also be used to probe transient interactions
between folded proteins and between proteins and nucleic acids, and could thus be used to
benchmark simulations of such systems. Often experiments involve measurements on proteins
labeled—one at a time—at multiple sites to get a global view of the structural dynamics of a
protein. In each experiment one effectively probes the distance between the spin-label site and
all backbone amide protons. Thus, one is faced with the challenge of assessing a simulation of
a protein based on all these measurements.

When calculating PREs from MD simulations and comparing to spin-label experiments, one
must decide on whether to and how to represent the spin-label. One approach is to model each
variant of the protein with its covalently linked spin label. This requires generating force field
parameters for the covalently modified protein and often also requires mutating the sequence to
exclude/include cysteine residues, to match the experimental protein constructs. One also must
repeat the simulation for each spin-label site of interest. An easier alternative is to simulate the
unlabeled wild-type protein and calculate distances between protein atoms as a proxy for the
distances between the spin-label and amide protons. For example, one may use an atom in the
sidechain of the reference (wild-type) sequence as a proxy for the location of the unpaired
electron. A compromise between these two extremes is to perform simulations of the wild-type
protein and then model the spin-label onto this simulation using a rotamer library developed to
describe the structural preferences of the label. Such rotamer libraries are available for the
commonly used MTSL spin-label129. For applications to large MD simulations, placing the
spin-labels and sampling the rotamers may be achieved by tools such as Rotamer-ConvolveMD
in the MDAnalysis package130,131 and DEER-PREdict132, with the latter also implementing
calculations of the PREs from the simulations. Which of these approaches to choose depends in
part on the desired accuracy and whether there is experimental evidence that the spin-label
itself introduces a change in the conformational ensemble.

There can also be complexities and decisions in determining how to account for dynamics when
computing the PREs. The relationship between structure, dynamics and the PRE is rigorously
described by the Solomon and Bloembergen equation133. This captures key conformational and
dynamical effects in the spectral density function , which is essentially the probability that
a given nucleus is rotating at frequency . However, computing the spectral density from a
simulation can be nontrivial, so sometimes more simplified expressions are used134.
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2.2 NMR datasets
Many NMR datasets for proteins and peptides are available in the literature and in the Biological
Magnetic Resonance Bank (BMRB)67,68. We focus here on datasets that appear particularly
useful for benchmarking force field parameters because they largely meet the following criteria:
1) the data are available in a machine readable format; 2) estimates of experimental uncertainty
are included; 3) a diversity of structural motifs, including different secondary and tertiary
structure elements and disordered regions, are present; 4) the proteins are small enough that
relatively short simulations suffice to provide well-converged estimates of the NMR observables.

2.2.1 Beauchamp short peptides and ubiquitin
Beauchamp et al.101 curated from the literature and BioMagResBank 524 NMR chemical shifts
and scalar J-couplings for 19 dipeptides (Ace-X-Nme, where X are non-proline amino acids), 11
tripeptides, tetra-alanine, and the protein ubiquitin. The short peptides in this dataset provide an
opportunity to assess the backbone preferences of amino acid residues in the absence of a
defined secondary structure. It is important for a force field to capture these preferences in order
to accurately predict the conformational distributions of flexible loops in folded proteins and of
unfolded and intrinsically disordered proteins.

2.2.2 Designed beta-hairpins and Trp-cage miniproteins
Many groups have used NMR to characterize the solution structure, stability, and dynamics of
designed beta-hairpin sequences135–155 and miniproteins156–162. Of note is a series of studies of
Trp-cage miniprotein sequences163–168. For Trp-cage, these data include NOE restraints for four
solution structures (PDB entries 1L2Y163, 2JOF165, 2M7D167, 6D37168), and folding rates
measured by NMR resonance line-broadening due to folded/unfolded-state exchange150,169 .
Temperature-dependent chemical shift deviations (CSDs) have been measured for dozens of
related sequences, offering a high-quality benchmark set that reports on how mutations perturb
folding. Molecular simulations are now more routinely able to access the microsecond
timescales required to make accurate comparisons with these observables.

2.2.3 Mao folded proteins
This is a collection of 41 folded  proteins for which both x-ray structures and NMR data,
comprising backbone chemical shifts and NOESY intensities, have been measured by the
Northeast Structural Genomic Consortium170. These data have been used to assess the
accuracy of NMR structures, X-ray structures, and Rosetta refinements170 and to compare the
accuracy of MD simulations run with different force fields58,171.
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2.2.4 Robustelli a99SB-disp benchmark dataset of folded and disordered
proteins
Robustelli and co-workers assembled a dataset that probes the ability of a protein force field to
simultaneously describe the properties of folded proteins, weakly structured peptides,
fast-folding proteins, and disordered proteins with a range of residual secondary structure
propensities58,134,171. This a99SB-disp benchmark set
[https://github.com/paulrobustelli/Force-Fields] spans 21 proteins and peptides with over 9,000
experimental data points.

The a99SB-disp dataset includes four folded proteins (ubiquitin, GB3, hen egg white lysozyme
(HEWL) and bovine pancreatic trypsin inhibitor) with extensive NMR data, including backbone
and sidechain J-couplings, RDCs, and backbone and sidechain spin relaxation order
parameters. The protein calmodulin, which contains two folded domains connected by a flexible
linker, is also included to assess the ability of a force field to simultaneously describe the
flexibility of the linker region, the stability of folded domains, and the propensity of the folded
domains to associate. The NMR data for calmodulin comprise chemical shifts, RDCs. The
benchmark also includes the bZip domain of the GCN4 transcription factor, a partially
disordered dimer with an ordered, helical, coiled-coil, dimerization domain, for which NMR
chemical shifts and backbone amide spin-relaxation parameters are available.

The dataset also includes nine proteins that are disordered under physiological conditions and
for which extensive sets of NMR (and SAXS) data are available. These test the ability of a force
field to accurately describe the dimensions and secondary structure propensities of intrinsically
disordered proteins. The proteins range in size from 40 to 140 amino acids, which was
important, as a number of force fields that produced reasonable dimensions for proteins
containing <70 amino acids produced conformations that were substantially over-collapsed for
longer sequences. The available NMR data for these disordered proteins include chemical
shifts, RDCS, backbone J-couplings, and PREs. Scalar couplings of the disordered Ala5 peptide
were also included.

The a99SP-disp dataset is enriched by a number of non-NMR data, including radii of gyration
obtained by various experimental methods, and data on the temperature-dependent stability of
fast-folding proteins, and was subsequently expanded171 to include the free energies of
association of 14 protein-protein complexes, the osmotic coefficients of 18 organic and inorganic
salts, the position of the first peak of the radial distribution function of seven ion-water and
ion-ion pairs, comparisons of Ramachandran distributions of blocked amino-acids in water and
Ramachandran distributions obtained from x-ray coil libraries, Lifson-Roig helix extension
parameters estimated from NMR for the 20 amino acids from Ace-(AAXAA)3-Nme peptides, the
relative folding free energies of mutants of 22 mutants of Trp-cage, the folding enthalpies of 10
fast-folding proteins, the Kirkwood-Buff integrals of ethanol water-mixtures, and the melting
curves of the Trpzip1 and GB1 β-hairpin forming peptides.
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2.2.5 Spin relaxation datasets
Spin relaxation data for a large number of proteins are reported in literature; see for example
Jarymowycz and Stone172, and some of these data are available in the BMRB. Most of these
data have not so far been analyzed in conjunction with molecular simulations, but there are at
least two promising examples. First, the membrane-bound, bacterial, TonB proteins possess a
long, disordered region that links their C-terminal domain to their transmembrane N-terminus.
Spin relaxation times have been measured for the C-terminal domain alone with varying linker
lengths (HpTonB194-285, HpTonB179-285, HpTonB36-285)173, and these data can be used to
evaluate the conformational ensembles predicted by MD simulations. In one such study73,
simulations with the Amber ff03ws force field reproduced the experimental spin relaxation times
of TonB as well as Engrailed 2, while CHARMM36m and Amber ff99-ILDN gave less accurate
results, apparently because they yielded overly collapsed conformational ensembles.
Interestingly, the three force fields gave similar accuracy for chemical shifts. Second, spin
relaxation data at multiple magnetic fields are available for the partially disordered 143–259
region of the Engrailed 2 transcription factor174. This region is highly conserved and is involved
in the binding of transcriptional regulators. Simulations with the Amber ff03ws force field yielded
good agreement with the experimental data, except for serine and aspartate residues73.

2.2.6 Salt bridge stabilities via NMR
In some cases, NMR data can be used to measure secondary properties which can then be
compared with simulations. For example, the thermodynamic stability of a salt bridge can be
assessed by monitoring NMR chemical shifts as a function of pH. One such study examined
three potential salt bridges in the context of a folded protein, the B1 domain of protein G
(GB1)175. These salt bridges involve lysine-carboxylate ionic interactions and were identified
from crystal structures. To examine whether these salt bridges are present in solution, NMR
experiments were performed to monitor both lysine nitrogen and protein chemical shifts, and the
hydrogen-deuterium isotope effects on the ammonium group, while titrating the carboxylates to
protonate them. Based on the NMR data, two of the salt-bridges are not formed in solution while
a third was only weakly formed, providing an important test of the ability of force fields to model
the strengths of weak salt bridges. Interestingly, most force fields tested overestimated the
stability of the salt bridges175, a result also reported by a previous study176 looking at the
association constants of oppositely charged amino acids in water, where the experimental data
were obtained by potentiometric titration rather than NMR. Here, the results were significantly
improved by atomic charge derivation strategies that implicitly incorporate solvent polarization177

and by the use of the more expensive, polarizable CHARMM Drude-2013178 and AMOEBA force
fields179.

3 Room temperature protein crystallography
The earliest protein crystal structures were determined by x-ray diffraction for specimens at or
near room temperature180. Later, methods of working with protein crystals at low temperature
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were developed, and these were widely adopted for their practical advantages181,182. More
recently, however, there has been growing interest in room temperature protein crystallography
because it gives insight into molecular motions that are quenched at cryogenic
temperatures181–184. Thus, although most crystallographic data available in the Protein Data
Bank (PDB) were measured at cryogenic temperatures, the PDB contains a growing number of
data measured at room temperature.

Moreover, room temperature (RT) crystallography is better suited than cryocrystallography for
benchmarking molecular simulations because, at cryogenic temperatures, there is little motion
to simulate, and it is also not clear that the conformational variability observed corresponds to a
well-defined thermodynamic ensemble at any particular temperature. The data provided by RT
crystallography are valuable because they bear both on structure and on conformational
fluctuation. Neutron diffraction crystallography, which can also be carried out at room
temperature, goes beyond x-ray crystallography in its ability to resolve hydrogen atoms in
protein structures. However, there are not many neutron diffraction structures because this
method can only be done at a few appropriate neutron sources.

Water typically occupies about 50% of a protein crystal’s volume185, so crystallized proteins are
usually quite well-solvated. Nonetheless, the conformational distribution of a crystallized protein
is likely to differ from that of the same protein in solution, due to protein-protein contacts,
perturbations of water structure, and the possible presence of cosolutes added to facilitate
formation of suitable crystals. Therefore, when one uses crystallographic data to benchmark
molecular simulations, one should simulate the crystal, rather than the protein in solution. This
requirement adds complexity and makes for larger and hence slower simulations, compared
with the conventional simulations that can be used with NMR benchmark data, since the latter
pertain to proteins and peptides in solution. Different proteins, and even different crystal
structures of the same protein, have different levels and characters of both conformational
variation and experimental error. Therefore, much as for NMR benchmarking, force fields should
be compared against a single crystallographic dataset, rather than attempting to compare force
fields based on benchmarks against different structures. Methods of simulating protein crystals
have been discussed in recent reviews 186,187.

This section reviews crystallographic observables that are relatively well developed for use in
benchmarking protein simulations, touches on the additional topic of diffuse scattering, and lists
crystallographic datasets that are well-suited for benchmarking.

3.1 Crystallographic observables

3.1.1 Bragg diffraction data

3.1.1.1 General principles
X-ray scattering from a perfect crystal would be focused into sharp spots on the detector; these
are generally called the Bragg positions. Real crystals also exhibit "diffuse" scattering at all
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orientations. Intensities at the Bragg positions are sensitive to the time- and space-average of
the electron density, and in this section we will limit our discussion to Bragg intensities. Diffuse
scattering, discussed in a subsequent section, reports on correlated motions and crystalline
disorder188. The Bragg intensities are related to the mean unit-cell electron density through the
complex structure factors, or the Fourier transform of the unit-cell electron density distribution. In
particular, the Bragg intensities are proportional to the squared amplitudes of the structure
factors. In the typical case of an absence of anomalous signal from which experimental phases
can be obtained, the phases must be obtained from an atomic model to compute the electron
density. The electron density therefore is not typically an "experimental observable" in the usual
sense. Still, for a well-refined model, with good resolution and an R-factor below 15% or so, it is
common to refer to the “observed electron density”.

3.1.1.2 Evaluation of MD simulations using Bragg diffraction data
The simplest way to benchmark a simulation of a protein crystal is to compare the average
structure from a simulation with a model structure available in the Protein Data Bank
(PDB189–191). This intuitive and quick comparison may be useful when there are large differences
between a proposed new force field and results from some current, widely-used force field. This
focus on a single structure may also help to identify specific problems in the proposed force
field, and thus can yield feedback to improve the parameters. To assess protein backbone
agreement, RMSD of Cɑ atoms or of all backbone heavy atoms can be used. To assess protein
side-chain agreement, RMSD of side-chain atoms, dihedral-angle agreement within an angular
threshold, or match between defined rotamers192 can be used. Note that a rigorous measure of
RMSD must account for symmetries; for example, a 180o rotation of the angle of a
phenylalanine in the model should not alter the computed RMSD. Also, because the Debye-Waller
factors (B-factors, Section 3.1.2) report on the mean squared uncertainty of an atom’s position,
which may include contributions from sources other than intramolecular motion (e.g., lattice
vibrations), constant offsets often are ignored in B-factor profile comparisons. The possibility of
alternate conformations (Section 3.1.3) should also be factored in.

A second approach is to compute the mean electron density from the simulation using
mdv2map in AmberTools with CCP4193,194 or xtraj in LUNUS with CCBTX195,196, use
crystallographic software to refine an atomic model into this density, and then use structural
metrics (see prior paragraph) to compare this model with the experimental structure model.
Such a comparison is, at least in principle, a sound method to assess agreement in the
presence of disorder.

A third approach is to compute the mean electron density from the simulation193–196 and compare
it with the crystallographic electron density. This avoids the intermediary of a structural model
inferred from the crystallographic density. Note that the observed electron density is itself a time
and space average over many unit cells and hence reflects disorder in the experimental system.
Because the density is often sharply peaked around atomic positions, standard methods of
comparing density, such as the Pearson correlation, can be more sensitive to small, local
differences than is desired for assessing the relative accuracy between force fields, although
these issues may be addressed by approaches such as local model-based map alignments197.
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Existing crystallographic software, such as EDSTATS in CCP4194 and
phenix.real_space_correlation in PHENIX198, can be used to compare electron density maps.

Other methods of comparing simulations to crystallographic data are possible. For example, one
could directly compare computed and measured Bragg intensities or electron densities. This
properly takes care of disorder, but can be more difficult to interpret, as modest deviations (by
an RMSD less than 0.5 Å) of the protein away from the "correct" structure can greatly reduce
the real-space correlations between computed and experimental densities199. In such cases,
other measures of accuracy than correlation may be more useful. One may also focus on the
accuracy of protein-protein contacts at interfaces. This highlights non-covalent and
solvent-mediated interactions that are important to get correct. Most crystal contact analysis
methods (such as the PISA software200) use a single average structure as input, so it is more
difficult to account directly for disorder. As with the comparison of average protein structures
discussed above, this sort of comparison may be most useful when there are relatively large
differences between the results from different proposed force fields.

3.1.2 Debye-Waller factors (B-factors)

3.1.2.1 General principles
The Debye-Waller factor of an atom, also known as its B-factor or temperature factor, is closely
related to the atom’s fluctuations about its modeled position. B-factors are, in principle at least,

related to the mean square displacement of the atom, , by the equation

However, B-factors can also have contributions from various sources of error, and are
sometimes viewed as “slop factors” that absorb other errors in the model to improve the fit to the
diffraction data. They may mask the identity of atoms of similar Z number, i.e. K vs. Ca, and may
also mask incorrect modeling of side chains, alternate conformations, and disordered regions.
Debates continue between crystallographers about when a region that exhibits signs of disorder
should be left unmodeled, modeled with zero occupancy, or modeled with B-factors allowed to
refine to high values; as a result, their meaning can vary between different crystal structures.
However, when derived from well-validated structural models201, that are modeled correctly and
carefully interpreted, they provide a meaningful measure of the mobility of atoms within a protein
structure. For structures with resolutions better than ~1.5 Å, it is often appropriate to refine
anisotropic B-factors, such that each atom is assigned a tensor of six parameters that define a
three-dimensional Gaussian distribution of atomic fluctuations.

3.1.2.2 Evaluation of MD simulations using Debye-Waller factors

Given a simulation of a protein crystal, it is straightforward to compute the mean square
displacement of each atom from its mean position and thus obtain computed B-factors; a
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modest amount of additional complexity is involved in computing anisotropic B-factors.
Alternatively, one may, again, refine a structural model into the electron density computed from
the simulation, and compare the resulting simulated B-factors with the experimental B-factors.

3.1.3 Alternate conformations

3.1.3.1 General principles
In contrast to B-factors, which in principle describe harmonic motion within a local energy well
(vide supra), alternate conformations explicitly describe anharmonic motion between discrete
conformational states in separate local energy wells. For example, alternate locations —also
known as alternative conformations, alt confs, alternate locations, or altlocs — can be used to
model amino-acid side chains that switch between different rotamer202 conformations. As they
are a powerful mechanism for modeling protein conformational heterogeneity, particularly at
high resolution, alternate conformations are a promising avenue for comparison to and
improvement of simulations. In a protein structure file, an alternate conformation is given as an
additional set of coordinates for a group of atoms (often a residue or series of residues) and
marked with a single-character identifier (A, B, C, etc.) that is unique within the file. Each
alternate conformation is also assigned a partial occupancy (i.e. probability) from 0 to 1 that is
determined by the crystallographic refinement. For covalently bound atoms, like those of
proteins, the occupancies of all alternate conformations for a given atom typically sum to 1. By
contrast, for molecules that are not covalently bound to the protein, like ligands and water
molecules, the occupancies often sum to less than 1. A crystal structure model that contains
alternate conformations is termed a multiconformer model.

Alternate conformations are often left unmodeled in crystal structure models even when they are
evident in the electron density maps203. Such missing alternate conformations can be modeled
in an automated and unbiased manner with tools such as the qFit software204. Crystalline MD
simulations can be used to find alternate conformations that are missed by such automated
methods186. Alternate conformations are significantly more prevalent at RT than at cryogenic
temperatures (cryo)205. Indeed, some alternate conformations that are observed only at RT and
not at cryo are critical to biological function183 (see “Cyclophilin A” below) and can modulate
ligand binding in important ways206. This highlights the importance of RT crystallography data for
revealing biologically relevant conformational heterogeneity in protein structures.

While different parts of a biomolecule may have alternate conformations, these conformations
are not always independent, e.g. a rearrangement of one part of a protein to an alternate
conformation might restrict which conformations its neighbors might have, etc. The RCSB PDB
format for crystal structure models does not provide a mechanism for specifying which alternate
conformations are physically compatible with one another, other than the A, B, C, etc. identifiers
themselves. This bookkeeping issue creates ambiguity in situations where, for example, residue
X with conformations A and B is near (in the tertiary structure) to residue Y with conformations
A, B, and C. In such a case, it is unclear which conformations of residue X are energetically
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compatible with conformation C of residue Y. The corresponding alternate conformations might
be coupled, uncoupled, or partially coupled.

3.1.3.2 Evaluation of MD simulations using alternate conformations
The fractional occupancies of alternate conformations inferred from RT crystallography can be
readily compared with the corresponding result from a simulation. Note that small changes in
the computed free energy difference between two conformations will lead to large changes in
occupancy if the free energy difference is near zero, but essentially no change if the free
difference is far from zero. This is because, given two conformers A and B, the probability of
being in state A is

where is the free energy change on going from A to B; and , assuming
only two accessible conformations. Conformational probabilities can be extracted from
simulations based on the occupancy of rotameric energy wells, e.g. the rotamer name strings202

that are output by software such as the model validation suite MolProbity201 or the related tool
phenix.rotalyze from PHENIX198. Such occupancies can also be coupled to temperature206. In
addition, the coordinates and occupancies of alternate conformations can be combined with
B-factors to calculate so-called crystallographic order parameters, which can be used to
compare to experimental NMR order parameters207; a similar framework could be useful for
comparing RT crystallographic models to simulations. In these ways, among others,
crystallographic alternate conformations can be rich targets for force field optimization.

3.1.4 Diffuse scattering (non-Bragg reflections)
Diffuse or continuous scattering refers to the cloudy, streaked, speckled, halo-shaped, or
otherwise patterned weak scattering that lies between the Bragg peaks. In contrast with the
Bragg scattering, which is associated with correlations in the mean electron density, the diffuse
scattering is associated with spatial correlations in the deviation of the density from the mean. In
principle, this means that, much as the Bragg peaks can be used to model the mean structure of
the crystals constituents, the diffuse scattering can be used to model their time-averaged
fluctuations. There have been several protein crystal MD simulations of diffuse scattering, and it
is straightforward to compute diffuse intensities from simulation snapshots199,208–215.Although a
limited study did show that the force field can influence the simulated diffuse scattering213, it is
not yet clear what sort of variation one should expect. Future crystal simulations should help
clarify whether analysis of diffuse scattering can be a useful component of benchmarking of
force fields.

3.1.5 Hydrogen coordinates from neutron diffraction
Protein x-ray crystallography generally resolves the coordinates only of atoms with atomic
number greater than one; hydrogens are visible only in well-ordered regions of ultra-high
resolution x-ray structures. This is because x-rays are scattered by electrons and a hydrogen
atom, with only one electron, scatters only weakly.  In contrast, neutrons are scattered by atomic
nuclei and neutron diffraction protein crystallography can provide experimental information on
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hydrogen atom positions and protonation states. These data are valuable because hydrogens
make up nearly half the atoms in proteins and can play critical functional and structural roles.
Thus, neutron diffraction studies are uniquely suited to discern hydrogen bonding patterns, the
orientations of solvents and side chain groups, and the protonation states of critical catalytic
amino acids such as the histidine in the catalytic triad of a serine protease. By the same token,
they provide distinctive information to benchmark protein force fields.

Although first demonstrated in the mid-1960s, macromolecular neutron crystallography has
become more practical with the commissioning of new higher flux neutron sources worldwide,
as well as improved techniques for crystal growth and molecular biology techniques for
producing large amounts of purified proteins. Neutron diffraction is generally weak, and requires
large crystals and long data collection times. On the other hand, in contrast to X-rays, there is
little to no radiation damage involved, so it is straightforward to collect room temperature data.

3.2 Protein crystallography datasets
Here, we highlight protein crystallography datasets that are well-suited to benchmark force field
accuracy by running simulations of protein crystals and comparing the results to experiment.
We prioritize the following features, which should be taken as desiderata rather than strict
criteria: 1) high resolution (better than 1.2 Å), so that observable data have low uncertainty, 2)
relatively unambiguous assignment of protonation states, 3) absence of non-covalent ligands or
co-factors, 4) diversity of secondary and tertiary structural motifs, 5) availability of crystal data
for the same protein system in multiple symmetry groups to explore the possible impact of
different crystallographic contacts, and 6) availability of crystal data for the same protein system
at multiple temperatures to identify biases toward structural artifacts that appear only at low
temperatures.

3.2.1 Scorpion toxin
Scorpion toxin (PDB ID 1aho) is a 64-residue globular protein with a room-temperature x-ray
data set at 0.96 Å resolution. It has only a small amount of regular secondary structure (one
9-residue helix and two short beta strands) but is stabilized by four disulfide bonds. It was the
subject of an early MD simulation216 that compared simulations of the crystal with four force
fields, all of which would now be considered obsolete. The notable finding at the time was how
diverse the simulation results were, even for simple metrics like average backbone structure and
computed B-factors. This study supported the idea that crystal simulations could be used for
testing certain aspects of protein simulations, both in terms of the fairly strong interactions that
determine the conformation of an individual chain, and also in terms of the weaker (often
solvent-mediated) interactions that influence the stability of the crystal lattice. The small size of
the unit cell was a more important consideration back in 2010 than it would be today. Although
the resolution is below 1 Å, the deposited model has a fairly high R-factor of 16.3%. The small
amount of secondary structure makes it a challenging problem, but the paucity of experimental
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analysis of alternate conformations (only four residues are assigned alternate conformers in the
deposited structure) may make it less useful than other protein systems discussed below.

3.2.2 Hen egg-white lysozyme
Hen egg-white lysozyme (HEWL) was one of the first proteins to have its three-dimensional
structure determined by x-ray crystallography, and it is widely used as an experimental model
system in part because of its ease of crystallization. This protein has 129 residues, eight helices
and two beta-sheets, and four disulfide bonds. Given these constraints, simulations with
different force fields may not yield markedly different results, but these data should nonetheless
be useful, as discussed below.

There are three RT crystal structures of the triclinic form (P1 space group) of HEWL (2lzt,  2.0 Å
resolution; 6o2h, 1.2 Å; 4lzt, 0.95 Å), as well as a cryo version (2vb1, 0.65 Å). Nitrate ions
predominate in neutralizing the protein, and a large number of solvent waters are visible in the
experimental electron density. The crystal density of the solvent has been determined to high
precision217 and is very close to that estimated by the MD simulations discussed below; this
suggests that we know the total number of water molecules in the unit cell to within an
uncertainty of just a few water molecules. Two MD simulations of the triclinic HEWL crystal
provide guidance for future studies.

First, Janowski et al.218 simulated a supercell with 12 protein chains and made extensive
comparisons to the reflection intensities from 4lzt. Perhaps most insightful was a comparison of
two newly-refined atomic models, one refined against the experimental data and a second
refined against the average electron density from a three-microsecond MD simulation. The
backbone of the simulated structure was about 0.4 Å away from the experimental structure,
which is well outside the expected experimental error, but B-factors were in good agreement
between the two refinements, aside from a small region near the N-terminus. Comparisons
between four protein force fields showed small but significant differences in how faithful the
simulations were to the experimental data. Second, Meisburger et al. simulated triclinic HEWL214

with a primary focus on interpreting diffuse x-ray intensities. Since collective motions of many
protein chains are important for diffuse scattering, simulations were carried out using 1, 27, 125,
and 343 unit cells, but they used only a single protein force field, so this study did not address
the suitability of diffuse scattering for force field benchmarking.

There are also RT crystal structures for two other crystal forms, orthorhombic (8dyz) and
tetragonal (8dz7), of HEWL, and these may further probe the ability of force fields to capture
crystal-packing interactions215.

3.2.3 Crambin
The small hydrophobic protein crambin, isolated from the seeds of the Abyssinian cabbage
(Crambe abyssinica), was found early on to form exceptionally well-ordered crystals219 and has
been used for the development of experimental phasing techniques. Of note here is a study
combining RT x-ray and neutron diffraction to 1.1 Å resolution (3U7T) and allowing for the
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modeling of anisotropic displacement parameters on select (exchanged) deuterium atoms220.
Crambin is particularly amenable to simulations because it has only 46 residues, contains both
alpha helical and beta strand secondary structure, and is held together by disulfide bridges.

3.2.4 Cyclophilin A
Human cyclophilin A (CypA) is a proline cis/trans isomerase that is attractive for training force
fields due to its well-studied conformational dynamics and high-resolution RT crystallographic
data. Several residues (Ser99, Phe113, Met61, Arg55) in the active site form a network that
exhibits correlated conformational dynamics on a similar timescale (ms) as catalytic
turnover—even in apo CypA—as measured by NMR relaxation experiments221. These dynamics
are critical for catalysis, as determined by RT crystallography that revealed the alternate
conformations involved in this dynamic active-site network detail, and subsequent mutagenesis
to rationally perturb them183. The alternate conformations in the CypA active site are primarily
related to one another by transitions between side-chain rotamers, but they also involve a
backbone motion called the backrub222 that was also used previously for other systems to model
conformations that better fit NMR relaxation data223. More recently, multi-temperature
crystallography across a series of eight temperatures for CypA added nuance to our
understanding of its dynamic active-site network, revealing evidence for more complex,
hierarchical coupling in which dynamics for some active-site residues are dependent on the
conformation of another key active-site residue (Phe113)224. In addition to these data, x-ray
crystallographic diffuse scattering225 and x-ray solution scattering226 have also been measured
for CypA. Thus, CypA has rich dynamics that are well-studied by RT crystallography and other
experiments and are ripe for comparison to MD simulations.

An attractive  crystallography dataset for validating simulations of CypA is the high-resolution
(1.20 Å) RT structure (PDB ID 4yuo)224, whose  structure model contains two (A, B) or three (A,
B, C) alternate conformations for different residues in the active-site network. This complicates
the creation of a single-conformer starting model for a given simulation; we recommend
beginning with either state A or state B, which have distinct rotamers for Phe113, which is
thought to be the linchpin of the network224. One challenge to using CypA to validate simulations
is that its catalysis and matching dynamics have been reported to be on the ms timescale221.
However, multi-temperature crystallography suggests dynamics on multiple timescales within
the active-site network, including faster motions at nanosecond timescales224. Mutagenesis and
solution scattering also point to a separate, independent loop region with faster dynamics226.
Thus, even simulations at shorter than ms timescales are likely to uncover relevant dynamic
features in CypA that can be useful for validation and force field optimization/development.
Moreover, CypA is moderately sized, with 165 amino acid residues, which will facilitate
reasonably long simulations, where enhanced sampling technologies may also be of use.

In addition to the 1.20 Å RT crystal structure, a similarly high-resolution (1.25 Å) cryo structure
of CypA (PDB ID 3k0m)183 in the same crystal lattice is also available. Such RT-cryo pairs could
in principle be used to optimize force fields to match the RT data better than the cryo data. This
strategy would not only select for force field parameters that result in a better match to the more
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realistic RT data, but could also be instructive regarding the pitfalls of benchmarking against
potentially idiosyncratic184 and at times artifactual cryo data206.

3.2.5 Ubiquitin variants
Computational protein design and directed evolution have been combined to engineer ubiquitin
variants with enhanced affinity to a desired binding partner (USP7) by stabilizing a specific
conformation of the β1β2 loop227. In a subsequent study, RT x-ray crystallography was used to
examine the structural basis for the increasing affinity of these variants over the course of the
design/selection process228. The resulting high-resolution RT crystal structures revealed that the
earlier “core” mutant of ubiquitin (with 6 mutations) exhibits multiple discrete alternate
conformations of the β1β2 loop, whereas the later “affinity-matured” mutant (with 3 additional
mutations) adopts a singular conformation of this loop. Also, elsewhere in the protein, both
variants exhibit a distinct mode of backbone flexibility: alternate conformations for a peptide flip
(residues 52-53).

High-resolution RT crystallography data and models are available for both ubiquitin mutant
proteins, at a resolution of 1.12 Å for the “core” mutant (PDB ID 5tof), and 1.08 Å for
“affinity-matured” mutant (PDB ID 5tog). Simulations based on these datasets should ideally
capture the differences in β1β2 loop conformational heterogeneity observed in the
crystallographic electron density maps for the two variants (more flexible for the “core” mutant,
and more rigid for the “affinity-matured” mutant) as well as the peptide flip shared by both
variants. For this system, a number of metrics could be used to quantify the match between
simulations and experimental data: root-mean-square fluctuations (RMSF) of backbone atoms
in the loop for simulations vs. for multi-conformer crystal structures, local real-space fit to the
electron density map in the β1β2 loop region, recapitulation of fractional occupancies for the
different loop conformations (perhaps after clustering the simulation snapshots), etc.

Overall, the high-resolution RT crystallography datasets available for these ubiquitin variants
provide a powerful opportunity to optimize force fields—not only in general, but also targeting
two specific goals: (1) accurate simulations of protein backbone conformational heterogeneity,
and (2) accurate predictions of the effects of amino acid substitutions on conformational
heterogeneity.

3.2.6 Protein tyrosine phosphatase 1B
Human protein tyrosine phosphatase 1B (PTP1B; also known as PTPN1) exhibits significant
structural dynamics across a range of time scales and length scales, as revealed by numerous
structural biophysics experiments. It therefore holds promise as a useful system for training
force fields to simulate dynamic proteins more robustly.

Recently, multi-temperature X-ray crystallography of apo PTP1B across a spectrum of
temperatures from cryo to RT229 provided insights into correlated conformational heterogeneity
in this protein. The resulting series of crystal structures featured alternative conformations, each
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modeled with partial occupancy, for the active-site WPD loop (open vs. closed) as well as distal
allosteric regions. As temperature increased, the WPD loop shifted crystallographic occupancy
from the closed to the open state. Simultaneously, the distal α7 helix, a key component of
PTP1B’s allosteric network, shifted occupancy from the ordered state to a disordered state, as
evidenced by diminished electron density for this helix at high temperature; an adjacent solvent
channel in the crystal lattice was able to accommodate this temporarily disordered protein
region. Several residues in between these regions exhibited smaller-scale conformational shifts
between alternate conformations that appeared to lubricate the larger-scale motions of the WPD
loop and α7 helix, mimicking the shifts seen previously for an allosteric inhibitor that displaces
α7230.

Complementing multi-temperature X-ray crystallography, other studies have used NMR
spectroscopy to characterize timescales of motion for various regions of PTP1B. NMR
relaxation experiments showed that the active-site WPD loop closes on a timescale
corresponding to the rate of catalysis (ms)231. Beyond the active site, NMR relaxation
experiments, mutagenesis, and molecular dynamics simulations restrained by NMR chemical
shifts showed that faster, relatively uncoupled dynamics are key to allosteric regulation via α7232.
Thus, PTP1B exhibits motions that may be amenable to various different types of simulations,
from short, traditional simulations to long, enhanced-sampling simulations.

Both of the major states of the protein are modeled in the 1.74 Å RT (278 K) crystal structure of
apo PTP1B (PDB ID 6b8x): the closed state (alternate conformation A) and the open state (B).
Most regions of the structure are modeled with either no alternate conformations, or both A and
B conformations. By contrast, because it is disordered in the open state of the protein, the α7
helix is modeled as only the A conformation with partial occupancy, with no coordinates for the B
conformation. Note that crystallography was performed with residues 1-321 of PTP1B, but only
residues 1-298 are visible in the electron density, even in the closed state with α7 ordered; the
remaining residues are always disordered in a solvent channel in the crystal lattice. Although
6b8x is not as high-resolution as some other very high-resolution room-temperature crystal
structures discussed in this manuscript, the wealth of types and extents of conformational
heterogeneity it features make it a promising candidate for force field evaluation. Simulations of
PTP1B based on 6b8x should be initiated from either the open state or the closed state of the
protein and should be assessed on the basis of their ability to recapitulate the allosteric coupling
observed in various experiments: as the WPD loop opens, the allosteric network should shift
toward the corresponding open-like state, and α7 should become disordered. In addition to
unbiased simulations, one could perform biased or guided simulations to enforce a shift in one
region (WPD or α7), then examine whether the other region allosterically responds as expected.

3.2.7 Endoglucanase
Particularly high quality data are available for endoglucanase (EG) from Phanerochaete
chrysosporium, making this a particularly appealing target for molecular dynamics studies. The
EG datasets combine two relatively rare aspects. The EG crystal structure was obtained using
both x-ray and neutron diffraction data (PDB 3X2P)233 at RT allowing direct comparison of
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simulations with experimental data.(Note, however, that this structure includes a non-standard
amino acid and an oligosaccharide ligand.) Furthermore, the neutron diffraction data makes it
possible to use experimentally-derived protonation states for protein residues234–236, removing a
potential cause of modeling errors and uncertainties, while also allowing direct determination of
the orientation of ordered waters and other factors. Water structure in this case is also much
more clearly defined, and amenable to careful curation237,238.

In one particular prior modeling study238, the EG-cellopentaose complex from 3X2P was
re-refined from 1.5 Å neutron and 1.0 Å X-ray diffraction data, with careful attention to placing
H/D atoms based on neutron scattering data and H-bond interactions with the local
environment. This particular study focused on whether and to what extent MD simulations of
crystals recapitulated experimental observables, and with a particular focus on water placement
and occupancy. The study computed electron density maps from crystalline simulations of a
2x2x2 periodic supercell under several different solvent conditions, with several different
restraints of the protein heavy atoms and ligand atoms. Clear indications of force field limitations
were identified. For example, although recovery of experimentally observed crystallographic
waters was over 90% when the protein was restrained modestly to crystallographic positions,
this fraction dropped to 50% without restraints. The drop traced to small, local protein motions
that disrupted entire water networks238 consistent with prior work239.

While this study focused primarily on recovery of crystallographic water molecules, it suggests a
route forward in terms of benchmarking force fields on this and similar systems238. The carefully
curated re-refined structures provide a valuable starting point and should be used as input for
simulations. Force fields could be benchmarked by repeating the simulation approach used
here, while comparing results at different restraint strengths. Presumably, as force fields are
improved, this will result in better recovery of crystallographic water structures at lower protein
restraint strengths or with no restraints. Additional benchmarking studies could more closely
focus on how well various force fields preserve the structure of the protein.

3.2.8 Staphylococcal nuclease
Staphylococcal nuclease (SNase) has provided a particularly valuable dataset for diffuse
scattering studies240, in part because until fairly recently, this was the only complete, high-quality
three-dimensional diffuse scattering dataset available for a protein crystal212. Crystalline MD
simulations greater than one microseconds in length allowed calculation of diffuse scattering
intensity for direct comparison with experiment. More recent work199 extended these simulations
to cover a 2x2x2 supercell, with roughly 5 μs of data, and obtained improved agreement with
experimental scattering data, perhaps because the simulations better represented the
crystalline environment. Still, agreement with experiment was far from perfect, giving room for
further improvement. Different force fields gave different diffuse scattering patterns and different
levels of agreement with experiment213, further supporting this idea.
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4 Statistical analysis of benchmark simulations
When comparing sets of simulations against experimental data, it is essential to determine
whether the differences are statistically significant241. Statistical uncertainties in simulated data
are perhaps most reliable if obtained by running multiple independent simulations,  but can also
be obtained by analysis of a single simulation242. The raw experimental data also have
uncertainties, and additional uncertainty may result from model assumptions, such as the values
of the Karplus parameters for 3J-values or the representation of NOEsy intensities as upper
bounds to interatomic distances. When multiple proteins are simulated and several properties
are considered, it may not be straightforward to determine if two sets of simulations are
significantly different or even which simulation shows the overall better agreement with the
available experimental data243–245. The differences in a particular property between different
force fields will be affected by both the variability due to the choice of protein and the variability
between independent replicate simulations. Therefore a statistical approach that takes mixed
effects explicitly into account seems most appropriate.
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