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Abstract

Proteins are among the most complex entities known to science. Composed of just

20 fundamental building blocks arranged in simple linear strings, they nonetheless

fold into a dizzying array of architectures that carry out the machinations of life at

the molecular level.

Despite this central role in biology, we cannot reliably predict the structure of

a protein from its sequence, and therefore rely on time-consuming and expensive

experimental techniques to determine their structures. Although these methods can

reveal equilibrium structures with great accuracy, they unfortunately mask much

of the inherent molecular flexibility that enables proteins to dynamically perform

biochemical tasks. As a result, much of the field of structural biology is mired in

a static perspective; indeed, most attempts to näıvely model increased structural

flexibility still end in failure.

This document details my work to validate alternative protein conformations be-

yond the primary or equilibrium conformation. The underlying hypothesis is that

more realistic modeling of flexibility will enhance our understanding of how natu-

ral proteins function, and thereby improve our ability to design new proteins that

perform desired novel functions.

During the course of my work, I used structure validation techniques to validate

conformational alternatives in a variety of settings. First, I extended previous work

introducing the backrub, a local, sidechain-coupled backbone motion, by demon-
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strating that backrubs also accompany sequence changes and therefore are useful for

modeling conformational changes associated with mutations in protein design. Sec-

ond, I extensively studied a new local backbone motion, helix shear, by documenting

its occurrence in both crystal and NMR structures and showing its suitability for

expanding conformational search space in protein design. Third, I integrated many

types of local alternate conformations in an ultra-high-resolution crystal structure

and discovered the combinatorial complexity that arises when adjacent flexible seg-

ments combine into networks. Fourth, I used structural bioinformatics techniques to

construct smoothed, multi-dimensional torsional distributions that can be used to

validate trial conformations or to propose new ones. Fifth, I participated in judging

a structure prediction competition by using validation of geometrical and all-atom

contact criteria to help define correctness across thousands of submitted conforma-

tions. Sixth, using similar tools plus collation of multiple comparable structures from

the public database, I determined that low-energy states identified by the popular

structure modeling suite Rosetta sometimes are valid conformations likely to be pop-

ulated in the cell, but more often are invalid conformations attributable to artifacts

in the physical/statistical hybrid energy function.

Unified by the theme of validating conformational alternatives by reference to

high-quality experimental structures, my cumulative work advances our fundamental

understanding of protein structural variability, and will benefit future endeavors to

design useful proteins for biomedicine or industrial chemistry.
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1

Introduction

The rise of high-speed, low-cost DNA sequencing technologies has allowed the eluci-

dation of many organisms’ genomes, including those of platypi (Warren et al., 2008)

and, most notably, humans (Venter et al., 2001; Lander et al., 2001). These spec-

tacular results mark the advent of an information age in biology. Many resources

will continue to be invested in the analysis of biological function as determined by

sequences on a genome-wide scale.

However, genes are merely the source code for the program of cellular life. In an

information transfer so fundamental it is known as the “central dogma of molecular

biology” (Crick et al., 1970), genes enact their biological effects by specifying RNA

molecules that encode the amino acid sequences of proteins (though we now appre-

ciate that noncoding RNA is also quite important). These molecular machines flit

about the intracellular milieu, instantiating the genetic information in a physical-

chemical sense. They are the workhorses of cellular metabolism, homeostasis, de-

fense, and propagation. Indeed, “protein comes from the Greek word meaning ‘of

first importance’ – and so it is, for without proteins, there would be no life” (I. Asi-

mov, 1993).
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Proteins perform these literally vital functions by virtue of their folded three-

dimensional structures. Precise arrangement of a protein’s constituent atoms is crit-

ical for function, and can only be achieved when the amino acid chain folds to the

correct shape. Again from Asimov: “A protein’s amino acid components have to be

arranged correctly in order for the right doohickeys to be in the right place to do the

right job. You can’t have a nitrogen atom waggling off there when it should be here,

up against something else” (I. Asimov, 1993). Thus, while invaluable information

can be gleaned from genomic analysis, a detailed mechanistic understanding of biol-

ogy – and, perhaps more importantly, an improved ability to rationally manipulate

biological systems to our benefit – requires detailed knowledge and understanding of

molecular structure.

Two approaches currently dominate the experimental elucidation of macromolec-

ular structure: X-ray crystallography and NMR spectroscopy. These methods are

quite mature and widely used today, especially X-ray crystallography. Indeed, thou-

sands of structures are determined each year, leading to massive growth of the

internationally recognized macromolecular structure repository, the Protein Data

Bank (Berman et al., 2000). However, impressive progress in subfields such as ribo-

some crystallography (Dunkle and Cate, 2010) notwithstanding, it remains difficult

to crystallize or otherwise determine the structures of many biologically important

macromolecules and complexes, such as membrane proteins, which are estimated to

comprise over a quarter of human proteins.

In light of these struggles, it is appropriate to recall observations by Christian

Anfinsen 50 years ago, which demonstrated that a protein’s native conformation

corresponds to its “most stable conformation, thermodynamically speaking” (Haber

et al., 1962). This so-called “thermodynamic hypothesis” earned Anfinsen a Nobel

Prize for relating sequence and structure in such a fundamental way, and remains

a central tenet of structural biology. In principle, then, it should be possible to

2



bypass experimental structure determination and instead predict the native state by

identifying the lowest-energy conformation. Efforts in this area have recently seen

some successes (Chapters 6 and 7), but consistently accurate prediction remains an

unattained goal.

A complementary scientific thrust is protein design (Chapters 2, 3, and 7), which

can be considered the inverse folding problem: the goal is to identify one or more

sequences that adopt the desired conformation (and perhaps therefore the desired

function), rather than to identify the conformation that the given sequence adopts.

The most successful approaches in both fields (protein structure prediction and

design) rely on computation rooted in classical physics. Underlying this methodology

lies a deterministic view of reality, in which a “perfect” energy function can optimally

predict future states given initial conditions. Apart from quantum mechanics (QM),

in which stochasticity plays a fundamental role, there is no substantive reason to

contradict this philosophy.

Unfortunately, however, classical physics in the form of commonly used molec-

ular mechanics force fields has deficiencies. One central failure is the simplified

supposition that atoms interact pairwise from their centers. In actuality, atoms ex-

perience steric interactions when the electron clouds surrounding them contact each

other. Furthermore, the distributions of electrons in these clouds for two interact-

ing atoms can be shifted by the presence of a third nearby atom; this polarization

effect gives rise to higher-order interactions, which are especially critical to model

for long-range electrostatics. Also, most proteins are shrouded in water, which is

perhaps the most fundamental building block for life, but is unfortunately difficult

to model for chemically subtle reasons. Explicit solvation models still suffer from

the pairwise-from-centers paradigm, and nevertheless are often too computationally

expensive. Implicit solvation models, on the other hand, fail to capture the complex

transition from continuous bulk solvent to discrete ordered water molecules playing
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integral structural roles at the protein surface (essentially acting as chemical exten-

sions of the protein). These fundamental limitations are likely a primary explanation

for continuing failures in even simple macromolecular modeling tasks (Das, 2011).

Computation rooted in higher-level theory such as QM could address many of

these deficiencies. However, at least MP2 level theory is necessary to reproduce what

is seen empirically, such as van der Waals interactions, so computational expense

precludes the consistent use of a more nearly perfect energy function (with modern

resources, at least).

In the context of theoretical soundness but practical limitations, it is important to

remember what we have at our fingertips: thousands of experimental structures that

provide windows into structural “ground truth”. These “gold standards” provide

a rich source of information on what it means to be “protein-like”. An important

corollary is that filtering based on quality criteria is critical to ensure reliability, not

just total numbers – “quality over quantity” is the operative phrase. Fortunately,

with modern data availability, one can make stringent demands on data quality and

still obtain more than sufficient quantity.

The primary thesis of this work is that macromolecular modeling can be aided

by empirically motivated techniques. For example, local mutation-coupled backbone

moves observed in real structures can be used for protein design (Chapters 2 and 3),

and carefully curated distributions of protein geometry (Chapter 5) can improve

both interpretation of experimental data during crystallographic refinement (Chap-

ter 4) and discrimination of native-like vs. unrealistic predicted structures (Chap-

ters 6 and 7).

Empirical observations can also augment molecular mechanics energy functions

and hopefully improve performance in terms of precise energy estimation. Here,

by contrast, the goal is to develop backbone moves, protein-like heuristics, etc. to

better differentiate realistic from unrealistic conformations, without regard for precise
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energetics. Future orthogonal work is necessary to develop downstream procedures

for comparing realistic alternatives based on more precise energetic criteria.

An immediate goal of this research is to use the explosion of data in the current

biological information age to improve and better understand macromolecular struc-

tures obtained by traditional means. A longer-term goal is to learn from Mother

Nature the fundamental determinants of protein structure; we hope to eventually

gain sufficient understanding to rationally manipulate proteins for our own bene-

fit, effectively mimicking natural evolution to more directly benefit our own species.

Overall, this work aims to advance our ability to productively engineer the complex

and dynamic biological world in which we find ourselves.
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2

Backrubs and Mutations

2.1 The biological importance of macromolecular flexibility

Anfinsen’s dogma (Sela et al., 1957; Haber et al., 1962; Anfinsen, 1973) tells us that

a protein’s amino acid sequence alone is sufficient to determine its native structure.

This theory revolutionized our understanding of intracellular information flow, from

gene to RNA transcript to protein structure with associated function. However, its

common formulation – “sequence determines structure” (singular) – is dangerous,

because it can lead one to mistakenly infer that a given protein exists in a single,

well-defined, unique conformation.

Counter-examples to this strict single-native-structure paradigm soon arose. For

instance, an early crystal structure of myoglobin (which was previously the subject

of the very first protein crystal structure, albeit at lower resolution (Kendrew et al.,

1958)) showed that the oxygen ligand had no viable entry or exit pathway in the

static structure (Takano, 1977). For its crystal structure to be reconciled with its

known biological function, myoglobin must “breathe” (Branden et al., 1991).

Many more cases of protein dynamism have since been demonstrated. For exam-
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ple, a state-of-the-art hybrid NMR/MD approach accounting for up to µs-timescale

motions demonstrated that ubiquitin conformationally varies primarily along one

dominant mode of pincer-like global motion, and that its numerous and diverse

binding partners select out ubiquitin conformations that are sampled along this

mode (Lange et al., 2008). This conformational selection strategy may have been

favored by evolution because it reduces the entropic cost of binding and allows for

multiple partners to bind specifically but differently. Another recent study used

ambient-temperature crystallography to identify multiple specific conformations at

the active site of a proline isomerase whose interconversion was required for enzy-

matic turnover (Fraser et al., 2009).

In hindsight, a literalist interpretation of Anfinsen’s dogma was at odds from the

beginning with the ensemble paradigm from statistical thermodynamics. In other

words, we can’t think of proteins as “solid rocks”.

For proteins whose cellular role is primarily architectural, stochastic fluctuations

around a relatively static energy landscape may be the dominant form of flexibility.

Enzymes and signal transducers like those described above, however, must addition-

ally exhibit flexibility in response to environmental stimuli such as binding by ligands

or other macromolecules. The near-native fluctuation and induced change paradigms

overlap to some extent, in that intermolecular interactions reshape molecular energy

landscapes such that new conformations become stochastically accessible. The mech-

anisms of interplay between these phenomena remains a fundamental open question,

as modern structural biology continues to explore the biological impact of structural

plasticity.

Backbone flexibility of a different sort is important for computational protein

design. A major goal is to learn how protein backbone shifts in response to sequence

changes, so that new proteins with desired functions can be engineered by modify-

ing existing proteins with known structures. One promising avenue for mastering
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backbone flexibility in protein design is to directly observe and categorize common

modes of backbone motion within single structures, and then employ those changes

as putative adaptations to engineered mutations in silico. However, in order to vali-

date their use for designing man-made proteins, it is important to first confirm that

these modes of motion directly accompany sequence changes in natural proteins.

Here I discuss one experimentally well-supported mode of local, mutation-coupled

backbone motion, the backrub; observations of backrub-coupled sequence changes;

and application of the backrub to protein design.

2.2 The backrub model for local backbone motion

The backrub (Davis et al., 2006) is a highly localized backbone motion tightly cou-

pled to sidechain rotamer jumps (Figure 2.1), initially characterized by examining

alternate conformations in ultra-high-resolution crystal structures (Figure 2.2). A

simple geometrical model of the backrub consists of a small (ă 15˝) rotation of a

dipeptide about the axis between the first and third Cα atoms. Resulting strain in the

N-Cα-C bond angle τ of all three residues may be partially alleviated and backbone

H-bonding maintained with small counter-rotations of the two individual peptides.

Note that this Cα formulation is a simplified but very close approximation of the

real molecular mechanism, which probably involves a computationally unwieldy set

of small shifts in 6-10 backbone torsion angles, as previously discussed (Davis et al.,

2006). Backrubs were seen for 3% of the total residues in that study, and for 2/3 of

the alternate conformations with a change in Cβ position – far exceeding the next

most common shifts, which are either peptide flips or local shear in a turn of helix

(Chapter 3).
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Figure 2.1: A schematic diagram of the backrub motion. The primary rotation
(θ1,3) moves the central residue and its adjacent peptides around the red axis (Cαi´1

to Cαi`1) as a rigid body, causing the central Cα to trace out the dotted circle. Sec-
ondary rotations (θ1,2 and θ2,3) move the individual peptides as rigid bodies around
the blue Cα-Cα axes. A small amount of distortion is introduced into the τ angles
(N-Cα-C), but they generally remain well within the range of values seen in typical
crystal structures. Made for (Davis et al., 2006).

9



Figure 2.2: Example of a backrub at ultra-high resolution. 1us0 Lys100 has two
different lysine rotamers that trace different routes, including different Cβ positions,
to achieve the same placement for the terminal amino group. To accomplish this, the
backbone must adjust for each rotamer; the difference is well modeled by a backrub
motion. Credit: Ian Davis.
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2.3 Natural backrub-coupled mutations

Several studies have successfully used the backrub approach to expand the search

space of protein design efforts (Georgiev et al., 2008a; Smith and Kortemme, 2008;

Donald, 2011) and improve agreement between computed sidechain dynamics and

nuclear magnetic resonance (NMR) measurements (Friedland et al., 2008; Salmon

et al., 2011). Recent work has shown that computational design of backbone struc-

tures generated by backrub sampling can recapitulate much of the sequence diversity

found in the natural ubiquitin protein subfamily (Friedland et al., 2009) and by phage

display experiments (Smith and Kortemme, 2011). However, the backrub has only

been empirically demonstrated to accompany dynamic rotamer changes, not actual

changes in amino acid identity. Importantly, no direct experimental evidence has

been presented to support the assumption implicit in these studies that a dynamic,

low-energy motion on the pico-to-nanosecond timescale is relevant on an evolution-

ary timescale. It would therefore be useful to confirm that backrubs accommodate

real mutations in natural proteins in order to validate their as part of the repertoire

of “moves” for protein design and other modeling efforts (Figure 2.3).

A näıve possibility is to directly compare wildtype and point mutant crystal struc-

tures and look for evidence of backrub-like backbone changes local to the mutation.

However, backbone coordinate shifts due to backrubs are very small – on the order

of the coordinate differences between crystal structures of the same protein (a few

dÅ (deciangstroms)) (Kleywegt, 1999; Mowbray et al., 1999; DePristo et al., 2004),

thus obscuring differences between genuine shifts and experimental noise. The initial

description of the backrub bypassed this problem by comparing alternate conforma-

tions within single structures (Davis et al., 2006). However, this approach is not

useful for comparing different molecules instead of different instances of the same

molecule. Instead, I pursued a different approach, using the collective weight of
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Figure 2.3: The backrub move for mutation-coupled local protein backbone ad-
justment. (A) A theoretical mutation in ideal β-sheet, from Leu in the mt rotamer
(green) to Val in the m rotamer (blue) (Lovell et al., 2000), changes the interactions
of the sidechain with its surroundings. Hydrogen atoms are shown in gray. (B) The
primary backrub rotation angle θ1,3 (red dotted circle) rotates the dipeptide of inter-
est around the Cα1-Cα3 axis (red line). As a result, the sidechain of residue 2 (the
central residue) swings in a hinge-like manner. In the theoretical example shown, the
space occupied by the new Val sidechain is now more similar to the space originally
occupied by the Leu sidechain. (C) The secondary peptide rotation angles θ1,2 and
θ2,3 (blue dotted lines) counter-rotate the individual peptides around the Cα1-Cα2
and Cα2-Cα3 axes (blue lines) to alleviate any strain introduced into the flanking
τ1 and τ3 bond angles, respectively, and to restore H-bonding of the two peptides’
amides and carbonyls, if necessary. The rotation angles, including the primary back-
rub angle θ1,3, define a motion, not a structure, and thus are meaningful only in
reference to a pair of conformations (e.g. before vs. after or mutant vs. wildtype).
Made for (Keedy et al., 2012).

many examples to ensure that observed local conformational differences were in fact

genuine (Keedy et al., 2012). I focused on two very common, quite different, and

representative structural motifs, each discussed in detail below.

2.3.1 Backrubs of α-helix N-caps

The N-cap or C-cap position of a helix is defined as the residue half-in and half-out

of the helix: the peptide on one side of the cap makes standard helical backbone

interactions, while the peptide on the other side has quite non-helical position and
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interactions (Richardson and Richardson, 1988). α-helix N-cap residues can make

several types of interactions that stabilize or specify the structural transition from

loop into α helix, the most common and dominant of which is a sidechain-mainchain

hydrogen-bond to the i+3 amide (Richardson and Richardson, 1988; Presta and

Rose, 1988; Serrano and Fersht, 1989). (See Section 2.6 for a comparison between

α-helix and 310 N-caps.) N-cap H-bonds enhance proteins’ stability by compensat-

ing for the loss of a mainchain H-bond at the helix start relative to the middle of a

helix; as a modern philosopher put it, “micro machines ... strengthen with molecular

bonds” (Deltron, 2000). Note that the sidechain cannot reach this H-bonding posi-

tion if the residue has helical φ,ψ, so this interaction also specifies the exact helix

start position and the direction from which the backbone can enter (Kapp et al.,

2004).

Asn, Asp, Ser, and Thr are especially favored at N-caps because their sidechains

have the proper chemical character and shape to mimic the helical backbone inter-

actions (which Gln and Glu are too long to do). Notably, Asn/Asp sidechains are

longer than Ser/Thr sidechains by one covalent bond, yet their H-bond distances

(N-cap sidechain O to i+3 amide H) are only slightly shorter (2.01 ˘ 0.18 vs. 2.17 ˘

0.18 Å) based on a survey of N-caps with i+3 H-bonds in the Top5200 database (see

Section 5.2). This means the backbone must somehow slightly adjust to maintain

similar H-bond geometry in both cases.

We first noticed that backrubs may explain such backbone adjustments upon

mutation between short and long N-caps sidechains while examining N-caps in T4

lysozyme. Visual analysis using the backrub tool in KiNG revealed that a mod-

est backrub (about 7˝) nicely models the relationship between the Thr59 N-cap in

the wildtype structure (2lzm) and the Thr59ÑAsn N-cap in the mutant structure

(1lyg) (Bell et al., 1992) (Figure 2.4). Intriguingly, as well as being one of the most

common N-caps, Ser is the most common amino-acid type for backrubs between al-

13



Figure 2.4: Motivation for exploring backrubs at N-caps. Left: The T49N mutant
of T4 lysozyme (1lyg, orange backbone, green sidechains) differs from the wildtype
(2lzm, yellow backbone, blue sidechains) by a mutation at the N-cap position (as-
terisk). Backbone differences that are suspiciously reminiscent of backrubs become
apparent at the N-cap i and i+2 positions (arrows) after local superposition using
the N-cap i-1, i+1, and i+3 Cαs (pink balls). Right: Manual backrub adjustments
in KiNG interrelate the wildtype and mutant backbones nearly perfectly.

ternate conformations in crystal structures (Davis et al., 2006), perhaps because it

has many distinct possibilities for sidechain-backbone H-bonding.

To ascertain whether or not backbone adjustments in response to N-cap mutations

are backrub-esque more generally, I performed a stringent search for α-helix N-caps

in the Top5200, resulting in identification of 429 Asn/Asp N-caps and a matching

sample choice of 500 Ser/Thr N-caps (randomly selected from the 3208 total). The

backbone conformations differ consistently: the longer Asn/Asp sidechains rotate the

first turn’s backbone away from residue i+3, while the shorter Ser/Thr sidechains

pull the first turn’s backbone toward i+3 in order to form the N-cap H-bond suc-

cessfully (Figure 2.5; see also supplementary kinemage). When average Asn/Asp

and Ser/Thr structures are superimposed using the Cαs surrounding the N-cap in

the first turn (N-cap i-1 and i+1 to i+3), all Cαs match well (ă 0.05 Å) except

the N-cap Cα itself (0.34 Å). The conformational difference at the N-cap position is
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well modeled by a backrub rotation of about 11˝, similar to shifts typical of rotamer-

change backrubs. Furthermore, for both N/D and S/T, the Cβ deviations (Lovell

et al., 2003) and the Cα-Cβ-Cγ bond angle distribution at N-caps are close to the

general case distribution. This means the observed Cβ shifts and further leveraged

sidechain shifts can be attributed primarily to backbone motion rather than altered

covalent sidechain geometry.
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Figure 2.5: Backrubs at α-helix N-caps. Crystal structure ensembles for Asn/Asp
(light green) and Ser/Thr (light blue) at α-helix N-termini are related by a back-
rub. Lowest-energy BRDEE conformations (see Section 2.4) for the N-terminus of
an ideal α helix with Asn (dark green) or Ser (dark blue) at the N-cap position
have a closely similar relationship. Cα and Cβ displacements between Asn/Asp and
Ser/Thr for both average crystal structures (lighter, in parentheses) and low-energy
BRDEE conformations (darker)evoke a hinge-like backrub operation. The ensem-
ble i+3 sidechain-mainchain N-cap H-bonds are illustrated with “pillows” of green
all-atom contact dots (Word et al., 1999b). Made for (Keedy et al., 2012).
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I also examined two control cases with similar backbone geometry but different

sidechain-mainchain interactions. First, I identified 538 α-helix N-caps with any

amino acid type except Asn/Asp/Ser/Thr, in which case the i+3 sidechain-backbone

H-bond is absent. Second, I chose 500 examples of mid-α-helix structure flanked by

at least four α-helical residues in both directions, in which case the i+3 sidechain-

backbone H-bond of an N-cap is satisfied by a usual i+4 backbone-backbone α-

helical H-bond. The average Cα atoms for both control categories are in between

the average Cα atoms for the Asn/Asp and Ser/Thr categories at the N-cap (or

structurally equivalent) residue (see supplementary kinemage). This confirms that

Asn/Asp and Ser/Thr N-caps are backrub-mediated excursions in opposite directions

from equilibrium N-cap/helix structure.

2.3.2 Backrubs of aromatics in antiparallel β sheet

Aromatic residues often pair with glycine in antiparallel β sheet by adopting ro-

tamers with χ1 « +60˝, which places the aromatic ring directly over a Gly on the

adjacent strand across a narrow pair of backbone H-bonds (Richardson et al., 1992).

Aromatic-glycine pairings in antiparallel β sheet have been demonstrated to yield a

synergistic thermodynamic benefit (Merkel and Regan, 1998). If the opposite residue

is changed to anything other than Gly, a sidechain including at least a Cβ atom is

now present, which would sterically clash with the aromatic in its original conforma-

tion. However, the “plus χ1” aromatic rotamer will still be compatible with some

rotamers of the opposite sidechain, provided that the aromatic may shift slightly to

re-optimize packing of its ring against the opposite residue’s Cβ hydrogens. Here we

investigate whether backrubs enable this relaxation by excursions in both directions

from a “neutral” β-sheet conformation. The leverage provided by such backbone

motions could lean the aromatic residue forward/backward to maintain close inter-

strand contact when the identity of the opposite residue is changed to/from Gly.
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A stringent structural motif search, similar to that described for N-caps above,

identified 321 Phe/Tyr residues with “plus” χ1 rotamers in antiparallel β sheet.

Aromatics are about three-fold as common in antiparallel vs. parallel β sheet, and

are about twice as likely to adopt a plus χ1 rotamer when they do occur in antiparallel

vs. parallel β sheet (data from Top5200), so we focused on antiparallel β sheet in this

study. We took special care to avoid “frayed” examples for which the cross-strand

pseudo-dihedral differed significantly in one vs. the other direction along the strand

pair, i.e. where the sheet was beginning to “pull apart”.

In 72 examples the amino acid on the opposite strand is a Gly, in which case

the aromatic sidechain moves downward to contact the Gly Cα H. In the other

249 examples the Cβ H atoms of the amino acid on the opposite strand push the

aromatic ring upward (Figure 2.6; see also supplementary kinemage). Pro cannot

provide both β H-bonds, but all other non-Gly residues are equivalent in this role,

since their sidechains must avoid the aromatic ring and present only Cβ H atoms

toward it. When the two average conformations are superimposed onto each other

using the aromatic i-2, i-1, i+1, and i+2 and opposite i Cαs, the surrounding Cαs

match well (ă 0.10 Å) but the central backrubbed Cα differs significantly (0.28 Å),

as with the N-caps. The average Cβ deviation from ideality (0.05-0.06 Å) is far less

than the outlier threshold (0.25 Å) (Lovell et al., 2003), and the average change in

aromatic Cα-Cβ-Cγ bond angle is very small (0.6˝, ă 1σ), resulting in a ă 0.05 Å

shift of the Cζ contact point. These observations argue against the possibility that

this large movement of the planar aromatic group is produced just by a bond-angle

“hinge” with Cα or Cβ as the pivot. Rather, a dipeptide backrub rotation of about

11˝ (presumably 5-6˝ from neutral in each direction) almost perfectly interrelates the

two average conformations.
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Figure 2.6: Backrubs at aromatic residues in antiparallel β-sheet. Crystal structure
ensembles for Phe/Tyr across from Gly (light blue) vs. anything else (light green)
undergo a backrub relative to each other. Lowest-energy BRDEE conformations
for 1z84 Phe171 across from Gln188 (visually truncated at Cβ for clarity) (dark
green) vs. Gln188 Ñ Gly (dark blue) have a similar relationship. The aromatic
Cα and Cβ displacements evoke a hinge-like backrub operation, both for average
crystal structures (lighter, in parentheses) and for low-energy BRDEE conformations
(darker). H-bonds are illustrated with “pillows” of green all-atom contact dots (Word
et al., 1999b). Made for (Keedy et al., 2012).

19



2.4 BRDEE: Backrub Dead-End Elimination

Given this evidence, an enticing next step was to apply backrubs to protein design

– essentially a computational analog of molecular evolution. Fortunately, I had will-

ing and able collaborators in Bruce Donald in Computer Science and his student

Ivelin Georgiev, purveyors and developers of the well-established dead-end elimina-

tion (DEE) algorithm.

The traditional DEE approach is to eliminate a “candidate rotamer” from further

consideration if its energy is provably higher than that of a “competitor rotamer”,

i.e. if the following criterion holds:

Epirq `
ÿ

j

min
s
Epir, jsq ą Epitq `

ÿ

j

max
s
Epit, jsq (2.1)

where ir is the candidate rotamer r at position i, it is the competitor rotamer t at

position i, js is any other rotamer at any other position that contributes to pairwise

energies, Epirq is the self energy of ir alone (with other self energy terms defined

analogously), and Epir, jsq is the pairwise energy of ir and js (with other pairwise

energy terms defined analogously). This formalism essentially bins pairwise atom-

atom interactions into pairwise residue-residue interactions, then iteratively prunes

rotamers that provably cannot be part of the global minimum energy conformation

(GMEC).

Unfortunately, minimization of models generated by this “rigid” version of DEE

over any protein degrees of freedom, e.g. backrub rotations, destroys DEE’s guarantee

of identifying the GMEC. This is because after minimization, a model that was

initially pruned may actually reach a lower energy than any model that was initially

accepted. For example, if a model was initially pruned because one of its sidechains

had a small steric clash, a backbone shift accomplished by backrub minimization

could move the sidechain to alleviate that clash.
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In previous related work, Bruce and Ivelin had devised DEE variants that enable

provable DEE-style search while allowing some additional flexibility. For example,

MinDEE allows sidechain χ dihedral minimization (Georgiev et al., 2008b) and BD

allows global, empirically-based backbone motions based on combined φ,ψ changes

that keep Cα atoms near their original positions (Georgiev and Donald, 2007). How-

ever, empirically motivated backbone motions such as backrubs had not yet been

considered in a DEE framework.

I initially considered working with Bruce and Ivelin to (use inverse kinemat-

ics to) shoehorn backrubs into the only existing flexible-backbone flavor of DEE,

BD (Georgiev and Donald, 2007), but this proved implausible due to the complexity

of backrubs in φ,ψ space (Davis et al., 2006).

Instead, we selected for a new mutant of DEE, so to speak, this time with

explicit (but discrete) backrub moves. The novel contribution of this algorithm,

BRDEE (Georgiev et al., 2008a), is to extend traditional DEE to provably and

exhaustively (Figure 2.7) search over backrub degrees of freedom in addition to

sidechain rotamers. The BRDEE criterion (analogous to Equation 2.1) is as fol-

lows:

Eapirq `
ÿ

j

min
s
Eapir, jsq ´ Et1

m
´

ÿ

j

max
s
Empjsq ´

ÿ

j

ÿ

k

max
s,u

Empjs, kuq

ąE‘pitq `
ÿ

j

max
s
E‘pit, jsq (2.2)

where Eapirq and Eapir, jsq are lower bounds on self and pairwise energies; E‘pitq

and E‘pit, jsq are analogously defined upper bounds; and Empjsq, Empjs, kuq, and Et1
m

are ranges of possible self, pairwise, and template energies, respectively. Intuitively,

Equation 2.2 is more stringent than the original DEE criterion (Equation 2.1) in

that it requires the “best” (lowest-energy) conformation for the candidate rotamer

ir to be “better” (lower-energy) than the “worst” (highest-energy) conformation for
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Figure 2.7: Before BRDEE, guaranteed identification of the global minimum en-
ergy conformation required exhaustive manual backrub sampling, e.g. in KiNG (Chen
et al., 2009b).

the competitor rotamer it, even allowing for changes to the system introduced by

backrub degrees of freedom.

With manual backrubs in KiNG (Davis et al., 2006; Chen et al., 2009b), single-

peptide counter-rotations can be used to reestablish backbone carbonyl and amide

vector orientations to maintain H-bonding interactions (see Section 2.2), but the

(value of the) best counter-rotation is context-sensitive. For BRDEE, we decided to

counter-rotate each peptide 70% of the way to complete restoration; this compromise

was enough to often alleviate τ bond-angle distortions induced by the primary back-

rub rotation and effectively codified backrubs as single-parameter moves, at some

cost in single-peptide variability.

I helped apply BRDEE to several systems, both to validate its ability to reproduce
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natural backrubs and to determine its potential utility for protein design.

2.4.1 High-resolution alternate conformations

The original backrub paper (Davis et al., 2006) presented several convincing examples

of alternate conformations visible in the electron density for ultra-high-resolution (ă

0.9 Å) crystal structures. These well-characterized backrubs present a useful test

bed for BRDEE. The goal of these experiments was to recapitulate A-like and B-

like conformations (i.e. conformations that match the rotamer as well as backrub

direction and approximate magnitude of alternate A and B) and, equally importantly,

avoid any other “decoy” conformations.

We investigated BRDEE’s performance on four examples: 1muw A Val168, on

the hydrophobic, buried surface of of a helix; 1n9b A Ile47, in the middle of a β

sheet; 1gwe A Asp163, an α-helix N-cap (see Section 2.3.1); and 1dy5 B Met29, with

a partially solvent-exposed, longer sidechain (Figure 2.8). After proper remodeling

of 1n9b’s backbone to reflect a split Cβ (Davis et al., 2006), A-like and B-like con-

formations were indeed recovered in every case. Moreover, if generated at all, decoys

always scored worse than the crystallographically observed conformations. This was

the case whether computations were initiated from the backbone and Cβ of alternate

A or of alternate B, implying that backrubs alone are sufficient to nicely interrelate

the two backbones. Note that the precise relative energies computed for the A-like

and B-like conformations are not meaningful because the energy function used, a

hybrid of molecular mechanics (Cornell et al., 1995) and a pairwise implicit solva-

tion model (Lazaridis and Karplus, 1999), is simplified and inaccurate; however, the

pruning of non-native-like conformations due to their unrealistically high energies is

biophysically relevant and practically useful.

Another interesting observation came from comparison of BRDEE’s top models

for 1muw Val168. A-like and B-like conformations with m and t rotamers were the
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Figure 2.8: Alternate conformation backrubs recapitulated with BRDEE. The top
two BRDEE conformations starting from the alternate A backbone and Cβ (green)
match alternate A (purple) and alternate B (pink) of the deposited crystal structures.
H-bonds are shown for two cases with green “pillows” (Word et al., 1999b). Chain
A was used in each case except 1dy5, where the alternate sidechains of Met29 in
chain B are better rotamers, have more closely matched occupancies, and fit the
experimental electron density more clearly than in chain A. (A) 1muw Val168. The
top two BRDEE conformations shown have been energy minimized with respect
to their χ1 dihedral; see text for details. (B) 1n9b Ile47. The backbone and Cβs
have been pre-split according to the original backrub study (Davis et al., 2006).
(C) 1gwe Asp163. The i sidechain to i+3 mainchain H-bond is shown. (D) 1dy5
Met29. An acetate ligand (brown) was omitted from the BRDEE calculations, and
would likely have sterically prevented the third and fourth best-scoring conformations
(transparent green). The surrounding buttressing sidechains (cyan) cause the fifth
best-scoring conformation (transparent green) to have significantly higher energy (by
ą 13 kcal/mol) than the top two best-scoring conformations, which are native-like.
The crystal structure has a single backbone, but the original backrub study (Davis
et al., 2006) concluded that a small backrub better explains the electron density.
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top conformations, as desired, but the third possible conformation with the p rotamer

was also produced, albeit with considerably higher energy (5-13 kcal/mol worse).

This energy gap between native-like and decoy BRDEE models is desirable in and

of itself. Interestingly, though, post hoc sidechain dihedral minimization created an

even wider energy gap, by lowering the native-like models’ energies significantly (the

sidechains became even more native-like in response to local packing constraints) but

the decoy’s energy less so. This result suggests that increased coverage of sidechain

dihedral space in future algorithms could lead to better native/decoy discrimination.

Therefore, one would like to have an algorithm that provably and simultaneously

searches over both sidechain dihedrals and backbone degrees of freedom (such as

backrubs and perhaps even other empirically motivated moves); I am continuing

to collaborate with the Donald lab to define a version of DEE with precisely these

capabilities (see Section 3.6).

Overall, BRDEE successfully reproduced experimentally observed rotamer-jump-

coupled backrubs.
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2.4.2 Natural backrub-coupled mutations

As a follow-up to Section 2.3, I wished to test whether a simple energy function based

on molecular-mechanics terms from Amber (Cornell et al., 1995) and a solvation

term from EEF1 (Lazaridis and Karplus, 1999) would recapitulate the empirically

observed backbone changes, given the chance to access them via a backrub. This

question is important for solidifying the connection between natural protein evolution

and computational protein design, and can be addressed using BRDEE.

For the N-caps (Section 2.3.1), I created an idealized helix N-cap motif with

a stretch of ideal helix (φ,ψ -60˝,-40˝) preceded by polyPro conformation (φ,ψ -

80˝,170˝) for the N-cap and its previous residue. I prepared two versions of this

motif as input to the algorithm, one with a short sidechain (Ser) and another with

a long sidechain (Asn). I then used BRDEE to compute the lowest-energy model

for each template, allowing backrubs up to 15˝ and rotamer changes at the N-cap as

well as small i+3 peptide rotations. The lowest-energy Ser N-cap shifted “forward”

whereas the lowest-energy Asn N-cap shifted “backward” in order to establish com-

parable hydrogen bonds in a manner remarkably similar to the empirically observed

structures (Figure 2.5, supplemental kinemage and PDB files). In particular, the

computed and observed Cα and Cβ shifts and inferred backrub angles are of similar

magnitude and directionality.

For the β aromatics (Section 2.3.2), fewer examples, and more variation for β-

sheet than for α-helix conformation, prevented the ideal-start calculation used for the

N-cap case. Instead, low-energy conformations were computed by BRDEE for several

examples judged to be appropriately representative of their respective type (across

from Gly or across from other): 1gyh Gly122 and Gly122ÑAla, 1khb Phe144 and

Phe144ÑGly, and 1z84 Phe171 and Phe171ÑGly. In all cases, the lowest-energy con-

formation appears to match the average crystal structure very well, whether across
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from Gly or from some other amino acid with a Cβ atom (Figure 2.6, supplemental

kinemage and PDB files).

The BRDEE results recapitulate the average crystal structures, confirming the

hypothesis that mutations between Ser/Thr and Asn/Asp at N-caps and between Gly

and anything else across from aromatics in β sheet are well modeled by a backrub re-

lationship. More generally, this implies that the backrub may reasonably accompany

mutations during natural evolution or in silico protein engineering.

2.4.3 Core and active site redesign

To further establish the effect backrubs may have on sequence diversity, we used

BRDEE to redesign two larger protein systems. The active site of the phenylalanine

adenylation domain of the non-ribosomal peptide synthetase enzyme gramicidin S

synthetase A (PheA for short), with the non-cognate substrate Leu instead of Phe,

provided a solvent-exposed environment; the B1 domain of the immunoglobulin-

binding protein G (GB1 for short) provided a contrasting hydrophobic environ-

ment (Georgiev et al., 2008a) (Figure 2.9).

Not unexpectedly, by accommodating mutant sidechains via backrubs, BRDEE

made possible a greater range of sequences compared to traditional fixed-backbone

DEE, as seen in Figure 2.10 for PheA (results were similar for GB1). For example,

at position 301, only sequences including Gly were computed to be low-energy using

traditional DEE, but sequences including Ala, Leu, Phe, Tyr, Gly, and Met were all

computed to be low-energy using BRDEE (Figure 2.10). This greater variety of mu-

tant sequencess is made possible because relatively subtle backrub adjustments can

alleviate initial clashes created by modal rotamers instantiated on fixed backbones,

which redounds to dramatically lower energies.

Altogether, these results bolster the idea that backrubs, which were originally

demonstrated to apply only to single-sidechain dynamic rotamer hops, may in fact
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Figure 2.9: BRDEE redesign templates. Sidechains of residues subject to mutation
and backrubs are shown in cyan. Top: active site of PheA (1amu), with the non-
cognate substrate Leu in red and the PheA ATP cofactor in orange. Bottom: core
of GB1 (1pga).
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Figure 2.10: Backrub-enabled sequence diversity in the redesign of PheA for the
non-cognate substrate Leu. Each row shows the distribution of mutations at a given
active site residue position across the set of sequences whose energies are computed
to be within 5 kcal/mol from the overall lowest BRDEE energy. A greater variety
of sequences are possible with BRDEE (bottom) than with traditional DEE (top).
Color coding of amino acid types is consistent across both panels and all residue
positions. Adapted from (Georgiev et al., 2008a).
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also describe backbone adjustments to fit mutated sidechains.
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2.5 Stabilization of a redesigned PheA enzyme

Having helped to incorporate backrubs into a provably accurate design algorithm

and established that they accompany natural mutations, I wished to use backrubs

to tackle a prospective protein design problem. To that end, I considered previous

work from the Richardson and Oas labs, which had showed that introduction of N-

caps via mutagenesis can improve protein stability (Kapp et al., 2004). Because my

earlier investigations also showed that backrubs can be important for accommodating

mutations at N-caps, it seemed potentially productive to design N-cap motifs into a

protein, using backrubs as necessary, to improve its stability.

PheA (Section 2.4.3) provided a useful test case. Its active site had been pre-

viously redesigned by the Donald lab to bind Leu instead of Phe; the resulting

T278L/A301G double mutant displays a dramatic substrate specificity switch (Chen

et al., 2009a). Subsequent “distal bolstering mutations” designed to be stabilizing

had actually improved specificity for the non-cognate substrate Leu relative to the

cognate substrate Phe in terms of the ratio of kcat/KM values, although it remains

unclear whether this effect was due to global stabilization of the enzyme to com-

pensate for destabilization by previously designed active site mutations or to some

other mechanism (Chen et al., 2009a). Nevertheless, it seemed reasonable to hope

that distal N-cap mutations designed to be stabilizing might also improve catalytic

specificity.

With this goal in mind, Ivelin Georgiev and I designed N-caps in T278L/A301G

PheA distal from the active site (Figure 2.11) using their protein design software.

Preliminary calculations with a flexible-sidechain but fixed-backbone algorithm,

MinDEE (Georgiev et al., 2008b), showed that N-cap mutations could potentially

stabilize the protein. Subsequent calculations with BRDEE incorporating up to 10˝

backrubs at the N-cap and i+3 residues showed the promise of forming traditional
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Figure 2.11: PheA N-cap mutations are distal from the active site. Left: Crystal
structure of wildtype PheA enzyme (1amu) with the cognate substrate Phe (blue),
cofactor Mg (gray), product-state cofactor AMP (orange), and distal Pro124 and
Leu255 sidechains (magenta). Right: In silico model of the redesigned enzyme with
new substrate Leu (pink), putatively stabilized by Pro124ÑAsn and Leu255ÑAsn
(green). Green dotted lines indicate distances of 22 and 20 Å from the Cαs of residues
124 and 255 respectively to the Cα of the ligand. Green “pillows” represent modeled
N-cap interactions: i sidechain to i+4 mainchain H-bonds (Word et al., 1999b).

N-cap i+2, N-cap i+3, and “capping box” H-bonds; notably, slight backrubs often

helped to properly position the sidechains.

In order to experimentally test these predictions in vitro, I expressed, purified, and

tested stability and catalysis of two of the best-scoring N-cap mutant proteins, P124N

and L255N (on top of the T278L/A301G mutant background), in the Donald wet lab

(with invaluable help from Cheng-Yu Chen). Cheng-Yu guided me through the steps

of site-directed mutagenesis, bacterial transformation, induction of expression, and

purification with a nickel column followed by FPLC chromatography. A Bradford

assay (Bradford et al., 1976) showed that the final concentrations were 33.7 mg/mL

for P124N and 46.9 mg/mL for L255N, and an SDS-PAGE gel showed that both

both mutant proteins were very pure, possibly ą 90% (Figure 2.12).

The biochemical results relative to the starting T278L/A301G construct were
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Figure 2.12: SDS gel with pure N-cap mutants of PheA. Byproducts of the pu-
rification process (whole-cell lysate, post-centrifugation supernatant, flow-through
from nickel column) for both of the N-cap mutants (L255N and P124N in the
T278L/A301G background) are quite diffuse on this SDS-PAGE gel, but the final
products show sharp bands corresponding to both the proper molecular weight por-
tion of the ladder (about 62 kDa) and a previously purified T278L/A301G provided
by Cheng-Yu Chen. (The T278L/A301G/P124N lysate was omitted by accident.)

inconclusive, yet suggestive. P124N showed an approximately 20% reduction in

kcat/KM (Table 2.1) based on a steady-state pyrophosphate-release assay used pre-

viously in the Donald lab (Stevens et al., 2006). It also showed no observable stabi-

lization based on circular dichroism using chemical denaturation with guanidinium

chloride (Figure 2.13). L255N, on the other hand, showed an approximately 80%

increase in kcat/KM, due mostly to lower KM (Table 2.1), and its CD curve hints at

a slight stabilization (Figure 2.13) – a promising result. However, it is important

to keep in mind that experimental error is significant with these experiments: the

pyrophosphate-release assay for activity (Stevens et al., 2006) is somewhat unreli-
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Figure 2.13: PheA N-cap mutant stability curves. The concentration of guani-
dinium chloride was slowly increased from 0-8 M to chemically denature the
proteins. Circular dichroism molar ellipticity was measured at 222 nm wave-
length for T278L/A301G and T278L/A301G/L255N and 230 nm wavelength for
T278L/A301G/P124N. To normalize molar ellipticity for each of the three experi-
ments, each value was expressed as a fraction of the observed ellipticity range across
the guanidinium chloride range.

able, and CD curves are difficult to interpret for such a large (62 kDa) protein due

to cooperatively folding substructures within the overall molecule. Further work,

including repeating the experiments and combining several such “bolstering” muta-

tions for a potentially additive effect, is required to ascertain the precise benefits (or

lack thereof) of L255N.
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Table 2.1: PheA N-cap mutant enzyme kinetics. Activities were measured by a
steady-state pyrophosphate-release assay. *Data for comparison provided by Cheng-
Yu Chen.

Enzyme Substrate kcat KM kcat/KM

(min´1) (mM) (min´1 mM´1)
wildtype* L-Phe 1.73 ˘ 0.29 0.0018 ˘ 0.0004 951.4 ˘ 111.2
wildtype* L-Leu 28.74 ˘ 1.58 6.98 ˘ 1.00 4.15 ˘ 0.36
T278L/A301G* L-Phe 3.37 ˘ 0.08 0.097 ˘ 0.013 34.94 ˘ 4.76
T278L/A301G* L-Leu 1.16 ˘ 0.10 0.015 ˘ 0.002 79.49 ˘ 13.67
T278L/A301G/P124N L-Leu 0.74 0.011 66.23
T278L/A301G/L255N L-Leu 1.17 0.0085 137.75
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2.6 α vs. 310 N-caps

To understand why the N-cap mutations didn’t yield more clear-cut results, we looked

closer at the starting point for the designs, the PheA crystal structure. Most helices

in PheA were already capped by a canonical Asn/Asp/Ser/Thr i to i+2 or i+3

hydrogen bond. The three N-caps we tried to design lacked such a traditional motif,

but upon closer inspection, we realized all three actually had 310 rather than α-helical

backbone in the first helical turn. Our struggles to use these existing coordinates

to straightforwardly design stabilizing N-caps suggested that nature has at least two

ways to handle the start of a helix: an N-cap sidechain H-bond or 310 backbone.

To further investigate this idea, I classified each N-cap in our Top5200 set. H-

bond pseudo-energies were computed as in DSSP with the standard -0.5 kcal/mol

cutoff (Kabsch and Sander, 1983). N-caps with an i+4 but not an i+3 mainchain-

mainchain H-bond were labeled α, N-caps with an i+3 but not an i+4 mainchain-

mainchain H-bond were labeled 310, and N-caps with both i+3 and i+4 mainchain-

mainchain H-bonds were labeled bifurcated α/310 and were henceforth ignored.

Asn/Asp/Ser/Thr were indeed found to be strongly preferred (by factors of 2.5-3)

at α-helix N-caps relative to protein structure in general (Figure 2.14). Gly is next

most common, but cannot form or be influenced by an N-cap H-bond.

On the other hand, Pro has a 2.5-fold spike of preference at 310-helix N-caps. Such

motifs may be favorable due to van der Waals interactions between the Pro ring and

the i+2 and i+3 sidechains of the first turn, as seen in Figure 2.15. The majority of

310 Pro N-caps have β φ,ψ (86%, 403/471), which presents the Pro sidechain toward

the first turn. Nearly all (96%) of those proline rings make van der Waals contact

with first-turn sidechains.

Perhaps not coincidentally, Pro is also favored at the i+1 position immediately

following an α-helix N-cap (Richardson and Richardson, 1988). Proline is good in the
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Figure 2.14: α vs. 310 N-cap propensities. (A) The 20 amino acid types are shown
ranked according to their α-helix N-cap propensity (solid line), defined as the fraction
of α-helix N-cap residues of the given amino acid type, divided by the fraction of
general case residues of that amino acid type (dotted line), all using the Top5200
data set. The correlation with the analogously defined 310-helix N-cap propensity
(dashed line) is surprisingly weak, except for both slightly disfavoring hydrophobics.
For example, Ser/Asp/Thr/Asn are the most common N-caps for α-helix but are not
especially favored as N-caps for 310-helix. Some other hydrophobic amino acids like
Ala/Ile/Val are uncommon as either type of N-cap. (B) The canonical α-helix N-
caps Ser/Thr/Asp/Asn (triangles) are grouped separately from the other 16 amino
acid types (circles); the two groups are compared based on the difference between
α-helix N-cap propensity and 310-helix propensity. The horizontal dotted line at 0.0
indicates neither an increase nor a decrease in preference for α-helix N-caps instead
of 310-helix N-caps. A one-tailed Mann-Whitney test shows with 95% confidence
(p-value = 0.00145 ă α = 0.05) that Ser/Thr/Asp/Asn are statistically unique in
terms of their specificity for α-helix N-caps.

first turn of any helix type, because the ring interferes sterically with any potential

preceding helix turn, removes one unsatisfied NH, and entropically favors helical φ,ψ

because it has fewer other possibilities than other residues. Pro slightly prefers a

preceding residue that is not in helical conformation, so it is more common in N-cap

i+1 than i+2 or i+3, but it cannot make either the N-cap sidechain-mainchain H-

bond or the reciprocal “cap-box” i+3 sidechain H-bond to the N-cap NH (Kapp et al.,

2004), so it is rare as an α-helix N-cap. That is presumably not a disadvantage for
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310-helix where those interactions do not occur, so Pro is well suited as a 310 N-cap.

This suggests the possibility that helix N-termini can transform from more tightly-

wound 310 (3 residues/turn) to looser α-helix (3.6 residues/turn), or vice versa, by

deletions or insertions in the preceding loop. For example, a canonical α N-cap motif,

with Asn/Asp/Ser/Thr at position i and Pro at position i+1, could be transformed

to a 310 Pro N-cap motif if deletion of residues in the preceding connection/loop

pulled the first turn tighter. I found no evidence of an increased prevalence (relative

to general-case protein structure) of vestigial Asn/Asp/Ser/Thr at the i-1 position

immediately preceding extant 310 Pro N-caps, suggesting that such residues may

change identity once no longer useful. Conversely, a 310 Pro N-cap could be the

precursor to a canonical α N-cap motif if insertion of residues in the preceding con-

nection/loop added “slack” to the first turn, in which case the Pro would become

the N-cap i+1 and the preceding residue would become the new α N-cap. Either

before or after the insertion and conformational change, this residue could mutate

to Asn/Asp/Ser/Thr to solidify a new α N-cap motif.

Also note that Asn/Asp are preferred at 310 N-caps but Ser/Thr are neutral,

despite both being strongly preferred at α N-caps (Figure 2.14). As mentioned in

the main text, with α N-cap conformation both categories of sidechains form strong

i+3 sidechain-backbone H-bonds, but with 310 N-cap conformation this interaction

is not possible. Asn/Asp instead form strong i+2 sidechain-backbone H-bonds, and

are therefore still preferred as 310 N-caps (albeit slightly less so than as α N-caps).

Ser/Thr, on the other hand, are slightly too short and form only weak i+2 sidechain-

backbone H-bonds, and are therefore not preferred as 310 N-caps. However, they

are not disfavored either; these net neutral 310 N-cap preferences suggest that any

unfavorable energetics may be counteracted by the small benefit enacted by the

weaker i+2 H-bonds.

In summary, even the relatively subtle and localized structural difference between
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α and 310 conformation at a helix N-terminus can have dramatic effects on the

preferred sequence. This observation underscores the critical role backbone flexibility

can play, both in the natural biological world and for rational protein design efforts.

It also highlights the synergistic interplay possible between structural bioinformatics

and interactive graphics: by investigating representative examples (and, sometimes

even more interestingly, outliers) identified by statistical analysis, one can discover

potentially fundamental evolutionary relationships (Figure 2.15) in a data-driven

way.
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Figure 2.15: The ring of Pro160 (pink) in 1m79 chain A makes van der Waals
interactions (green/blue dots) with the sidechains of Ser162 and Glu163 (purple).
These close interactions are possible because the 310-helical i+3 mainchain-mainchain
H-bond (gold dashed line) pulls the Pro close enough to the first-turn sidechains.
Note that Ser at position i+2 and Glu at position i+3 are among the most common
identities given a 310 Pro N-cap.
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2.7 Discussion

Before I began my studies of local protein backbone motion, it was known that

backrubs allow dynamic transitions between rotamers (Davis et al., 2006), but there

was no direct evidence that they allow transitions between amino acid types (i.e.

mutations) and are therefore suitable for inclusion in protein design calculations.

To fill this gap in our knowledge, I first used ensembles of carefully curated,

high-quality examples of local motifs to confirm that backrubs accompany at least

some specific amino acid differences (Section 2.3). Next, I worked with collabora-

tors to implement backrubs in a provably accurate protein design algorithm – the

first of its type (Section 2.4). I then helped apply this procedure to recapitulate

natural backrub-coupled rotamer jumps (Section 2.4.1) and sequence changes (Sec-

tion 2.4.2), expand the portions of realistic sequence space accessible to active site

and hydrophobic core designs (Section 2.4.3), and bolster a previously redesigned

enzyme (Section 2.5). The partial failures of the latter experiment due to 310 instead

of α backbone further emphasized that small backbone changes can have amplified

energetic effects (Section 2.6).

Given this evidence that backrubs accommodate sequence changes, one would

suspect that they help proteins play host to accumulated mutations during the pro-

cess of evolution. The N-cap and β aromatic studies do not directly address such

true evolutionary relationships between proteins, but rather substantiate the idea

that backrubs enable single amino acid changes at specific motifs. Nevertheless,

those studies do indirectly support the hypothesis that backrubs accommodate indi-

vidual mutations in specific proteins, thereby aiding actual evolution within protein

families (Friedland et al., 2009); future work will be needed to further investigate

this idea.

An interesting related question is the extent to which a mutant backbone may be
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selected from the discrete backbone states possible for the wildtype residue (Tokuriki

and Tawfik, 2009) as opposed to from a more continuous range of generic possibilities.

For backrubs, backbone coordinate changes are very small, and it is likely that in

most cases the mutant backbone can access the entire continuous ˘5-10˝ range, with

the final choice dictated by the new sidechain’s dealings with the (relatively fixed)

local structural environment.

Rare exceptions may occur when that environment is exquisitely well packed

(i.e. the local “structural memory” (Anfinsen, 1973) is strong), the wildtype residue

has alternate rotamers related by a backrub, and at least one rotamer of the mu-

tant amino acid is very chemically/structurally similar to at least one of the wild-

type sidechain’s alternate rotamers (e.g. Val-Thr, Ser-Thr, Val-Ile, etc.). In such a

case, the mutant sidechain may fit in by approximating the pre-existing alternate

wildtype rotamer to which it is most similar, in which case the mutant backbone

would likely match the corresponding wildtype backrub state. For larger, more dis-

tributed/global/discrete backbone changes – such as peptide flips or other even larger

crystallographically visible alternate backbone conformations – the notion that the

mutant backbone is essentially selected from among a discrete set of pre-existing pos-

sibilities seems more plausible, since there are more interactions specifying a unique

backbone conformation for long than for short backbone segments; a single mutation

is unlikely to overwhelm this confluence of conspiring forces.

The situation is similar from the perspective of a rational protein engineer. For

small backbone changes such as backrubs, it is desirable to completely explore the rel-

evant backbone conformational space using an algorithm such as BRDEE, evaluating

each possibility using a molecular mechanics energy function. For larger backbone

changes, on the other hand, it may be more useful to propose possibilities based

on pre-existing, experimentally observed structural heterogeneity; Section 3.6 of the

next chapter offers guidance in this direction.
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3

Shears

3.1 Fishing for new backbone motions

Backrubs are the most common type of local backbone motion, and are extremely well

validated (see Chapter 2). However, despite their widespread occurrence, they offer

only partial coverage of the conformational space available to protein backbone via

local adjustments. Therefore, a pressing need is additional models of local backbone

motion, equally well supported by empirical observations, to supplement backrubs.

To this end, I underwent an exploratory study to identify novel modes of backbone

motion. I compared a number of motifs with distinct subsets of conformations, but

unfortunately found no simple, easily describable backbone differences.

For example, I compared mid-helix Asn with the m-80 rotamer (H-bond to i-

4 carbonyl oxygen) vs. the m-20 rotamer (van der Waals to i-4 carbonyl oxy-

gen) (Lovell et al., 1999). It initially seemed plausible that interacting with the

preceding helical turn in one way vs. another might require a small backbone ad-

justment to properly position the sidechain. Unfortunately (from the perspective of

a prospective protein modeler requiring new backbone moves), ensembles of superim-
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Figure 3.1: Mid-helix Asn m-80 (left) and m-20 (right) rotamers. The difference
in χ2 results in contrasting modes of interaction with the preceding helical turn: an
H-bond for m-80 and van der Waals packing for m-20. However, these differences in
non-covalent chemistry do not translate to differences in backbone coordinates: the
backbones are indistinguishable. Examples were taken from the Top5200 data set
(Chapter 4) and superimposed using the previously reported examples 1udc Asn99
and 1ab1 Asn12, respectively (Lovell et al., 1999), as reference structures.

posed examples extracted from otherwise unrelated crystal structures demonstrated

that the backbones of the m-80 and m-20 subsets are almost identical (Figure 3.1):

the Asn Cα to i-4 O distances are 3.84 ˘ 0.14 and 3.82 ˘ 0.16 Å, respectively, and

the Asn Cβ to i-4 O distances are 3.51 ˘ 0.17 and 3.54 ˘ 0.19 Å, respectively.

I reached a similar conclusion examining Asn vs. Asp “pseudo-turns” (also known

as “Asx turns”) (Tainer et al., 1982; Rees et al., 1983). In this motif, an Asn/Asp

sidechain Oδ1 at residue i in a pseudo-turn mimics the backbone O at residue i-1 in

a true tight turn. However, the backbone does not seem to react appreciably to the

slight difference in sidechain chemistry between Asn and Asp (Figure 3.2).

I also considered the possibility of sidechain-mainchain swaps as useful backbone
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Figure 3.2: Asn or Asp pseudo-turns vs. tight turns. The Asn and Asp pseudo-
turns are indistinguishable from each other (top left and right), and both match the
true tight turns (bottom left) fairly well (bottom right). For each category, roughly
100 examples from the Top5200 were superimposed onto an arbitrary reference ex-
ample with a ď 0.5 Å RMSD cutoff. (When a ď 1.0 Å RMSD cutoff was used
instead, Asn and Asp pseudo-turns appeared still very similar to each other, but
perhaps somewhat less similar to the tight turns.) The atoms for superposition were
Cα i+2, i+1, and i and either Oδ1 i for pseudo-turns or Cα i-1 for tight turns. The
examples shown are all type II (Venkatachalam, 1968), but results were along the
same lines for types I, I’, and II’ in the sense that Asn and Asp pseudo-turns of a
given type were very similar to each other and fairly similar to tight turns of that
type.
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moves. Indeed, mainchain mimicry by sidechains is observed in a number of contexts.

The tight turn vs. pseudo-turn motif described above is one clear example. Another

example is misfit regions of crystal structures where ambiguous electron density led

the crystallographer to mistakenly model sidechain atoms where instead the back-

bone should continue, introducing geometric and steric errors that MolProbity flags

as worrisome (Figure 3.3) (Arendall et al., 2005). (The sidechain-mainchain swap

is a mistake in such cases, but it is nevertheless suggestive that certain atomic cor-

respondences could be formulated as a useful in silico operator (see Section 7.4).)

Furthermore, pairwise comparisons of some computationally predicted models reveal

sidechain-mainchain swap relationships located precisely at critical folding nuclei

where conformational changes must occur for in silico “folding” to proceed, as dis-

cussed in Section 7.4. Taken together, these observations suggest that a sidechain-

mainchain swap operator may be useful as a discrete move with significant local

impact. However, a loop closure protocol of some sort would be needed to address

the resulting chain break, which may in general be rather large; this makes a swap

operation significantly more complex than a backrub, which straightforwardly main-

tains chain connectivity. Therefore, sidechain-mainchain swaps remain a tantalizing

and potentially powerful possibility for structural modeling, but more detailed inves-

tigation and careful benchmarking are required to establish their actual utility.

I additionally looked at aromatic residues across from Gly vs. any other residue

type in parallel instead of anti-parallel (Chapter 2) β sheet, but because this motif

is much more rare, I could not find a sufficient number of distinct examples for any

meaningful analysis.
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Figure 3.3: Erroneous sidechain-mainchain swap in crystal structure at N-terminus.
Left: A sidechain is incorrectly assigned to mainchain density at the N-terminus of
1lpl. The error is flagged by multiple criteria including steric clashes (pink spikes),
rotamer outliers (orange sidechains), and significant positive (blue mesh) and nega-
tive (orange mesh) Fo-Fc electron density peaks. Right: The error is corrected in the
re-refined version, 1tov, by flipping out the sidechain and instead extending the helix
N-ward for several more residues. The resulting model is a good fit to the 2Fo-Fc
electron density (gray mesh). Credit: Jane Richardson and Ian Davis.
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3.2 Shears: helical motions orthogonal to backrubs

In contrast to the partial failures described above, I did have success investigat-

ing an idea that our lab previously postulated (Davis et al., 2006) and that Tanja

Kortemme’s lab more recently discussed but did not study (Smith and Kortemme,

2008): helix combined winding/unwinding or “shear” (Figure 3.4). This movement

affects three peptides to the backrub’s two, and shifts the central peptide roughly

parallel to its original orientation whereas the backrub effects a perpendicular mo-

tion. The 2D component of a shear move can be envisioned as a perturbation of a

rectangle to form a parallelogram. A more concrete analogy might be a playground

swing moving side-to-side instead of the usual back-and-forth. This swing metaphor

emphasizes the geometric strain imparted to the “joints” (i.e. Cαs) for increasing

shear magnitudes; thus shears are restricted to being subtle motions with local ef-

fects. (Note, however, that the actual shear occurs in 3D, with the joints offset in

the z-direction relative to the x-y plane of the swing.)

To begin studying this new motion, I implemented shears in our Java code base

much as Kortemme and colleagues imagined (Figure 3.4). I also built a tool in

our graphics program KiNG (Chen et al., 2009b) to allow interactive shear modeling

(Figure 3.5). Next, I searched for examples of shears in both crystal and NMR struc-

tures. Finally, I consulted with Mark Hallen of Bruce Donald’s lab on incorporating

shears into a new flavor of dead-end elimination called DEEPer.
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Figure 3.4: The shear backbone motion. (a) Simple Cα-only representation of
shear, viewed down the axis of an ideal α helix (light colors). Shears of 5˝ (darker)
and 10˝ (darkest) swing the central peptide Cα2-Cα3 peptide (cyan) sideways by
coordinated rotations of the Cα1-Cα2 peptide (blue) and Cα3-Cα4 peptide (green).
(b) All-atom representation of shear, viewed from the side of the ideal α helix (i.e.
rotated 90˝ from (a)). Shears of 2˝ over a 10˝ range are shown. The central carbonyl
is notably displaced parallel to the central peptide. One endpoint conformation is
marked by balls and line segments colored as in (b). No individual peptide rotations
are shown in this illustration.

49



Figure 3.5: The shear tool in KiNG. Users can interactively remodel a region
using the shear (top-left window), backrub (top-right and middle-right windows),
and sidechain rotator (not shown) tools simultaneously, with all-atom contacts from
Probe (Word et al., 1999b) illustrated in real time.
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3.3 Characterizing shears in Cartesian and Ramachandran spaces

As mentioned above, Tanja Kortemme and colleagues proposed a reasonable param-

eterization of the shear motion (Smith and Kortemme, 2008), so I implemented a

very similar model (Figure 3.4). First, the mainchain atoms from Cα i to Cα i+1 as

well as the i+1 sidechain rotate about Cα i in the plane defined by Cα i, Cα i+1,

and Cα i+2; this is the primary shear rotation. Then the i+2 sidechain and the

mainchain atoms from Cα i+2 to Cα i+3 rotate about Cα i+3 in the plane defined

by Cα i+1, Cα i+2, and Cα i+3. The angle of this rotation is calculated to keep the

distance between Cα i+1 and Cα i+2 at its original value (near 3.8 Å); in practice,

this is done not truly continuously or algebraically, but rather by sampling at 0.1˝

increments. Finally, the mainchain atoms between Cα i+1 and Cα i+2 are rotated

about the axis defined by those Cαs to make the i+1 carbonyl C–O bond vector as

close as possible to its unperturbed direction. Subsequent counter-rotations of the i

to i+1 peptide and i+2 to i+3 peptide can optionally be used in a similar manner

as with backrubs (Section 2.2).

I explored the φ,ψ behavior of shears, and found it to be quite different from that

of backrubs (Figure 3.6). To be sure, both moves trace out swaths in Ramachandran

space that are very context-sensitive, i.e. that differ greatly depending on whether

the moves are initiated from α or β structure. However, shear φ,ψ traces appear to be

more linear than backrub φ,ψ traces, suggesting shears are in some sense simpler. In

addition, shears generally cannot be as large as backrubs (in terms of the magnitude

of the primary rotation) without encountering distorted backbone geometry, although

full counter-rotations of the flanking peptides appear to be possible more often with

shears than with backrubs.
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Figure 3.6: Shears vs. backrubs in Cartesian and Ramachandran spaces. Shears of
˘ 15˝ and backrubs of ˘ 30˝ were initiated from both ideal α helix (φ,ψ -60˝,-40˝)
and ideal β strand (φ,ψ -120˝,+140˝) conformations with both full (ε “ 1) and no (ε “
0) counter-rotations. Allowed conformations are in green; conformations disallowed
by either Top8000 Ramachandran criteria (Chapter 5) or bad τ bond angles (ą 5.5˝

from ideal) for any of the 4 (shears) or 3 (backrubs) constituent residues are in hot
pink. The trace left by the N-terminal (i-1) residue is in purple; that left by the
C-terminal (i+2 for shears, i+1 for backrubs) residue is in orange. The traces are
complex, context-dependent, and different between shears and backrubs.
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3.4 Shears in crystal structures

The original backrub analysis (Davis et al., 2006) involved extensive analysis of ultra-

high-resolution crystal structures to provide experimentally derived evidence for the

new motion. Similarly, here I present a broad survey of shears in ultra-high-resolution

crystal structures.

3.4.1 Traversal between deposited alternate conformations

I first explored the ability of shears vs. backrubs to explain local protein backbone

motions that were already modeled in crystal structures. To define an appropri-

ate protein data set, I extracted the 54 protein-only (i.e. lacking DNA and RNA)

structures in the PDB as of May 7, 2012 with ă 90% sequence identity to each

other, resolution ď 0.9 Å, at least one chain with at least 34 residues, and electron

density maps available from the EDS, and added hydrogens with Reduce (using the

arcane reduce -nobuild999 command to avoid Asn/Gln/His flips) (coordinates and

maps available in supplement). The target set of local backbone regions included all

“shear-like” regions, i.e. those with “anchor” Cα positions (Cα1 and Cα4) displaced

by ď 0.01 Å between declared alternate conformations. The pair of alternate confor-

mations with the largest Cα2 and Cα3 displacements was chosen if more than the

usual two (A and B) were available.

I then used a simple iterative algorithm to traverse from the first alternate confor-

mation to the second. Each step consisted of the small (ď 1˝) shear and/or backrub

plus peptide rotations that most improved local backbone heavy atom RMSD over

the window of 4 Cαs and 3 carbonyl oxygens, provided that φ and ψ remain in a fa-

vored or allowed Ramachandran region and τ remains within 5.5˝ of ideal. I declared

convergence for a given region when the RMSD changes became very small (ă 0.001

Å). This approach is deterministic in that it involves no stochasticity, but it does not
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guarantee to find the combination or sequence of backbone changes that optimally

interrelates the two alternates. Backrubs and shears are not precisely commutative

– though the differences in final coordinates for different orders of operation are only

a few cÅ (hundredths of an Ångstrom) – so an exact solution to this problem would

be very computationally demanding (see also Section 3.6). My simple iterative ap-

proach sought to address this issue by limiting itself to a series of small backbone

changes, thus approximating an equilibrium process, and ultimately achieved quite

reasonable endpoints.

In the end, shears were more useful than backrubs in absolute terms for 22% of

cases, and added value relative to using just backrubs for interrelating the two con-

formations for 89% of cases (Figure 3.7). Of course, shorter backrub-like two-peptide

alternates are more common than the shear-like three-peptide alternates considered

here – this is definitely true as modeled by crystallographers, and probably also true

of structural dynamism in real molecules – so shears almost certainly account for

less than 22% of alternates overall. Nevertheless, the results above suggest that the

shear paradigm is in fact a reasonable explanation for a substantial fraction of local

backbone changes.

3.4.2 Mining for shears in anisotropic electron density

To provide a lower bound on shears’ prevalence to complement the upper bound

described above, I conducted a manual search for shears using the data set of ultra-

high-resolution crystal structures described above. The data set contained ą 10,000

peptides which could conceivably be the central peptide in a three-peptide shear; I

avoided examining all of them by narrowing my attention to candidates for which

the electron density for the central carbonyl oxygen was anisotropic in a direction

roughly parallel to the peptide plane. Many examples were deposited with a single

conformation and were difficult to definitively categorize as shears, backrubs, or other
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Figure 3.7: Shears vs. backrubs for interrelating 3-peptide alternate conformations
in crystal structures. The x-axes describe the fraction of the original alternate con-
formation difference, expressed as RMSD over 4 Cαs and 3 carbonyl oxygens, that
can be traversed by iterative backrubs plus rotations of the 3 interstitial peptides.
The y-axes describe the same measure for shears plus peptide rotations (top) or for
shears plus backrubs plus peptide rotations (bottom). Points above the diagonal
lines indicate alternate conformation regions for which shears provided some value
in absolute terms (top) or in addition to backrubs (bottom).
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motions based on manual modeling with the KiNG shear, backrub, and sidechain

rotator tools, but I was able to successfully identify 28 shear-like examples among

the top 90 or so candidates (more persistent examination would have undoubtedly

revealed more examples). This result translates to a lower bound of 0.3% of peptides

undergoing shears, suggesting that shears are roughly an order of magnitude rarer

than backrubs, which occur at about 3% of residues (Davis et al., 2006).

The confirmed shear examples were primarily localized to helical regions or helix-

like loops. For example, 1muwA 63-66 is found in the first turn of a helix (Figure 3.8)

and 2ykzA 116-119 is in the middle of a helix (Figure 3.9). About a third involve

definitive rotamer jumps for at least one of the two central residues; this is likely a

conservative estimate since sheared regions are often relatively solvent-exposed and

therefore the central sidechains may have multiple low-occupancy conformations that

are difficult to detect and explicitly model.
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Figure 3.8: A shear in the first turn of a helix. Left: 1muwA (xylose isomerase)
63-66 is modeled with a single conformation, but the anisotropy (best seen for the
central carbonyl oxygen) in the 2Fo-Fc electron density contoured at 0.7 σ (gray)
and 3.0 σ (purple) and the rotamer outlier for Thr65 (orange) suggest a refitting
is in order. Right: a manually refit model with a 7˝ shear (-4˝ and +3˝ from the
original conformation), similarly small peptide rotations, and rotamer changes for
Thr65 better explains the density and avoids the rotamer outlier. Note that Ser63
(bottom, foreground) is the N-cap and Glu66 (bottom, background) is the “capping
box” (Harper and Rose, 1993) for this helix; corresponding sidechain-mainchain i to
i+3 and i+3 to i H-bonds are shown.
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Figure 3.9: A shear in the middle of a helix. 2ykzA (cytochrome C prime) 116-
119 is deposited with shear-like alternate backbone conformations which provide a
good fit to the anisotropic 2Fo-Fc electron density contoured at 1.0 σ (gray) and
3.5 σ (purple); this is especially visible for the carbonyl oxygens. Lys117 is further
modeled with alternate rotamers, one of which forms a sidechain-sidechain H-bond
(light green “pillow” and line) to an Asp in the next turn and the other of which
points out to solvent. The latter rotamer may have slightly too high occupancy
judging by a -3.0 σ Fo-Fc peak (orange), and an additional rotamer may also be
present based on a +3.0 σ Fo-Fc peak (blue).
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3.4.3 Modeling shears into anisotropic electron density

With help from Jeehyun Lee, I went on to re-refine one such case (2jfr 135-138) in

PHENIX (Adams et al., 2010). Refinements were performed both with and without

a split into alternates using the KiNG shear tool. In each case, first occupancies

were refined with xyz coordinates and B-factors fixed, then xyz coordinates and

anisotropic B-factors were refined with occupancies fixed. As expected for such

small coordinate changes, the final R-factors were nearly identical, with Rwork 0.139

˘ 0.001 and Rfree 0.153 ˘ 0.001. Nevertheless, the fit to the density was improved

visually (Figure 3.10).

Conclusion: Shears in crystal structures

There is reason to believe that the estimate given above for the prevalence of shears

and the original estimate for the prevalence of backrubs (Davis et al., 2006) are con-

servative, i.e. that they underestimate how common these motions truly are. Namely,

we now know that low-occupancy sidechain conformers lurk in electron density typ-

ically considered noise (Lang et al., 2010), especially with data collected at room

temperature (Fraser et al., 2011). It is possible that these hidden sidechain conform-

ers “drive” subtle backbone motions; indeed, the original backrub analysis (Davis

et al., 2006) and the shear/rotamer-jump coupling statistics presented above impli-

cate backbone motion quite generally when sidechains switch rotamers.

I recently identified an example of a heretofore hidden backbone motion in a

multi-conformer, room-temperature crystal structure of CypA that James Fraser

and Henry van den Bedem generated using qFit, a new algorithm for invoking al-

ternate conformations only where they are locally necessary to aggregately explain

the electron density (van den Bedem et al., 2009). Residues 142-145 were mod-

eled with a single conformer in the original deposited structure (PDB code 3k0n),

but interestingly qFit suggests a set of shear-like backbone alternate conformations
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Figure 3.10: Remodeling and re-refinement of a candidate shear region. In both
panels, each pair of extremely similar coordinates and electron density maps is from
before vs. after re-refinement, demonstrating that refinement changes the model very
little. Top: 2jfr 135-138 is deposited with a single conformation for the backbone
(light green), but has alternates for the sidechain of Arg137 (dark green) to explain
lower-contour electron density peaks (not shown). Bottom: This region appears to
better fit the electron density after being manually remodeled with the KiNG shear
tool to have alternate backbone conformations separated by a shear.
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Figure 3.11: A shear in an room-temperature multi-conformer crystal structure.
Left: Residues 142-145 in CypA are modeled with a single conformation in the
“traditional” cryogenic structure (3k0n). The model is a reasonable fit to the 2Fo-Fc
electron density contoured at 1.0 σ (gray), which is slightly anisotropic for the central
carbonyl oxygen. Right: The room-temperature multi-conformer qFit model, on the
other hand, includes 3 alternates with backbones related by a shear-like motion to
explain the electron density. Each shear end-state is allocated about 50% occupancy.
The multi-conformer model adds a second rotamer (dark purple) in addition to the
original rotamer (light purple) for Glu133. It also selects a rotamer for Arg144 (dark
blue) that is displaced in a swath-like fashion by the backbone shear, instead of the
single original rotamer (light blue).

coupled to a rotamer change at Glu143 (Figure 3.11). Importantly, shears are not

hard-coded into qFit, so the result of a shear “emerging” from better interpretation

of the experimental data can be counted as validation of the shear concept.
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3.5 Shears in NMR ensembles

I also looked for shears within three relatively recently published ubiquitin ensembles,

each of which was created by imposing NMR dynamics measurements as restraints

in molecular dynamics simulations.

The DER (dynamic ensemble refinement) (Lindorff-Larsen et al., 2005) ensemble

was produced by imposing NOE and backbone 15N relaxation S2 restraints on 16

parallel molecular dynamics simulations, such that the replicas together explained

the structural and dynamics data. This process was repeated for 8 cycles and the

resulting models were pooled. The MUMO (minimal under-restraining minimal over-

restraining) (Richter et al., 2007) ensemble was created similarly, but with 2 replicas

for the NOE restraints and 8 replicas for the relaxation S2 restraints; this arrangement

was empirically found to better reproduce a simulated (and therefore exactly known)

reference ensemble based on back-calculated NMR data. By contrast, the EROS

(ensemble refinement with orientational restraints) (Lange et al., 2008) ensemble

was generated by a less intuitive series of steps involving 2-replica simulations to

satisfy NOE restraints (as with DER and MUMO) but with pooling of replicas that

matched the backbone RDC S2 restraints. The similarities and differences between

the ensembles are summarized in Table 3.1.

Previously, Ian Davis searched for backrubs in the DER ensemble (the others

hadn’t been published yet) by superimposing each local 5-residue window onto the

equivalent window from each other model in the ensemble. Backrub-like pairs were

indicated by low RMSD for the “anchor” Cαs (1, 2, 4, 5) and large (i.e. farther from

0˝) backrub Cα pseudo-dihedral (3-2-4-3’, where 3 is Cα3 from one model and 3’ is

Cα3 from the other model).

To search for shears, I modified his method to instead superimpose each local

6-residue window. In this case, shear-like pairs had low RMSD for the new anchor
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Table 3.1: Three ubiquitin ensembles reflecting structure and dynamics, created
using different experimental restraints. *(Lindorff-Larsen et al., 2005) **(Richter
et al., 2007) ***(Lange et al., 2008)

Ensemble PDB code Models NOEs 15N S2 RDC S2 Overfit?
DER* 1xqq 128 yes yes no probably
MUMO** 2nr2 144 yes yes no no
EROS*** 2k39 116 yes no yes probably

Table 3.2: Candidate shears common to all three ubiquitin ensembles. *Central two
residues of six-residue window, flanked by two residues on each end. **Illustrated in
Figure 3.12.

Central # DER # MUMO # EROS
peptide* model pairs model pairs model pairs
Ala28-Lys29 4 4 1
Lys29-Ile30 3 4 1
Ile30-Gln31** 3 6 2
Thr66-Leu77 2 1 1

Cαs (1, 2, 5, 6), small shear Cα pseudo-dihedral (maximum absolute value of either

3-2-4-3’ or 4-3-5-4’), and large central Cα displacement (minimum of either 3-3’ or

4-4’). Intuitively, regions for which some model pairs matched these criteria were

shear-like because they were firmly anchored on both ends and had central Cαs that

displaced significantly in the peptide plane.

I manually determined that values of ď 0.05 Å anchor RMSD, ď 4˝ pseudo-

dihedral, and ě 0.3 Å displacement produced similar numbers of interesting model

pairs as did Ian’s manually selected backrub parameter values. There was significant

variability in the identities of the windows flagged as shear-like across the three

ensembles, but there was unanimous agreement on a few regions (Table 3.2). The

most prevalent region identified is in the heart of the only major helix in ubiquitin

(Figure 3.12).
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Figure 3.12: Ile30-Gln31, the most prominent shear common to all three ubiquitin
ensembles. All models from the pairs implicated as undergoing a shear in this region
(Table 3.2) are superimposed using the Cαs of residues 28, 29, 32, and 33 (i.e. the
same Cαs used for superposition for the exploratory stage). Each model in each pair
was manually assigned to a shear direction (red for minus, blue for plus) based on
visual inspection. The backbone is clearly separated between the two categories for
the central tripeptide but matches well for the flanking regions, indicating a shear-
like relationship. The central sidechains, however, do not reveal any obvious coupling
to the backbone.
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By using more generous values of ď 0.10 Å anchor RMSD, ď 5˝ pseudo-dihedral,

and ě 0.25 Å displacement, I was able to plot ensemble-wide “shearness” – defined

as the percent of all possible model pairs that meet the looser shear-like criteria –

as a function of sequence (Figure 3.13). The most significant peaks are again in the

long main helix, with a secondary peak for the short mini-helix.

Notably, the DER and MUMO ensembles have higher peaks than does the EROS

ensemble; this is not due to their slightly larger sizes (128 and 144 models instead

of 116) since “shearness” is a normalized quantity, namely percentage of model pairs

suggestive of a shear. Thus one might imagine that shears are primarily fast-timescale

motions, at least in ubiquitin. However, 15N relaxation S2 values are high for these

regions, which one would näıvely interpret as meaning those regions are relatively

rigid. Furthermore, RDC S2 values are perhaps a bit low for the mini-helix, sug-

gesting it could exhibit motion of some sort on a longer timescale. Based on these

discrepancies, the fact that shear-like model pairs are more prevalent in the DER

and MUMO ensembles may be due more to methodological differences between the

DER/MUMO protocol and the EROS protocol (see above and Table 3.2) than to

influences from faster-timescale experimental NMR data. Ultimately, a controlled

comparison involving the same protocol but different experimental restraints would

be necessary to fully disentangle the effects of timescale and methodology.

These results all corroborate my conclusion from observations of crystal structures

(Section 3.4) that shears are indeed more common in helical regions.
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Figure 3.13: Shearness along sequence for three ubiquitin ensembles. The per-
cent of all model pairs that have a shear-like local relationship (see main text) is
plotted against sequence for three ubiquitin ensembles (red, blue, green) generated
by different hybrid NMR/MD methods. For all three ensembles, the major peak
of “shearness” is for the main helix (residues 23-35), although a minor peak also
appears for the shorter mini-helix (residues 55-60) (filled triangles: α helix, open
squares: β sheet). NMR order parameters based on shorter-timescale 15N-relaxation
data (Tjandra et al., 1995) (purple) and longer-timescale RDC data (Lakomek et al.,
2006) (green) are relatively high in these regions.
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3.6 DEEPer: protein design with shears, etc.

I have not yet fully investigated the propensity for sequence changes to induce shears,

as I did with backrubs (Section 2.3). However, shears are similar to backrubs in many

structural and geometric respects: they are small-scale, local backbone motions that

often accompany rotamer jumps (in at least one third of cases – see Section 3.4).

These observations suggest that shears could likewise be useful for accommodating

mutations in design efforts.

To that end, I collaborated with Mark Hallen of the Donald lab on properly

integrating shears alongside other backbone moves including backrubs and contin-

uous sidechain minimization a la MinDEE (Georgiev et al., 2008b). The resulting

algorithm, termed DEEPer (Dead End Elimination with Perturbations), is the first

provably accurate, deterministic protein design algorithm to incorporate both con-

tinuous backbone flexibility and continuous sidechain flexibility (Figure 3.14) (Hallen

et al., 2012).

Assigning rotamer identities at different residue positions is commutative, so or-

der of operations can be conveniently neglected in the usual DEE framework. The

non-commutativity of shears and backrubs (Section 3.4), which I noticed early on

in DEEPer’s development, thus appeared to pose a problem: the conformation de-

scribed by an s˝ shear and a b˝ backrub could in principle correspond to either the

conformation created by an s˝ shear then a b˝ backrub or the conformation created

by a b˝ backrub then an s˝ shear. Ivelin Georgiev and I skirted a similar issue

for multiple backrubs in BRDEE by never allowing overlapping backrubs (Georgiev

et al., 2008a). For DEEPer, by contrast, Mark Hallen implemented moves in sepa-

rate “layers”, such that final models could be created consistently by applying large

moves first and small moves later.

Results of DEEPer calculations performed by Mark Hallen showed the promise
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Figure 3.14: Cartoon of simultaneous backbone and sidechain flexibility in
DEEPer. In an imagined scenario starting from an ideal helix (top left), an AlaÑVal
mutant can adopt one of three rotamers (middle left). DEEPer is able to prune two
of them (χ1 m and p) due to clashes (red), but the third (χ1 t) (teal) is acceptable.
Energy minimization simultaneously over shear and χ1 degrees of freedom results
in the final lowest-energy conformation (green) (bottom left). These conformations
can be mapped onto a simple theoretical energy surface (right) corresponding to
E “ 2ps ´ 4q2 ` 0.5pc ´ 180q2, where s is the shear angle and c is χ1. Because
the starting values for s and c are 0 and 175, respectively, the lowest-energy con-
formation corresponds to a 4˝ shear and a 5˝ χ1 rotation. The surface represents
the multidimensional space that is provably completely searched by DEEPer for a
given torsional well (in this case χ1 t). Made with help from Mark Hallen and Bruce
Donald.
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of combining two orthogonal move types – shears and backrubs – alongside con-

tinuous sidechain dihedral flexibility to identify realistic low-energy sequences and

conformational ensembles.

For example, DEEPer was used to identify low-energy sequences for a region

of 2bgx. Shears and backrubs of 0 or ˘ 5˝ were allowed for residues 126-131, and

sidechain flexibility was allowed at adjacent residues, for a total of 19 flexible residues.

Unlike most DEEPer runs, this particular search was discrete instead of continuous

in order to better visualize the backbone conformational space being searched (Fig-

ure 3.15). The resulting lowest-energy conformation had three sequence changes and

significant backbone displacement relative to wildtype.

DEEPer was also used to generate biophysically reasonable ensembles of low-

energy conformations given fixed sequences, in the spirit of K‹ (Lilien et al., 2005).

For example, residues 157-160 of 2ixt have alternate conformations related approxi-

mately by a shear motion in the crystal structure, likely indicating increased back-

bone dynamics compared to other parts of the structure. Correspondingly, the

DEEPer ensemble generated using the native sequence showed more diversity of

backbone conformations than in tests on other systems, sampling the conformational

space around and between the alternates (Figure 3.16).

Low-energy states such as those described above are less likely to be discovered by

algorithms allowing less flexibility, or by algorithms allowing DEEPer’s flexibility but

lacking guarantees of solution optimality. Notably, across 67 sequence-design runs

on 64 protein systems, the lowest-energy conformations calculated by DEEPer were

lower in energy than those calculated by a faster version of MinDEE by an average of

1.9 kcal/mol (ranging from 0 to 14.1 kcal/mol). Furthermore, the backbone motions

in DEEPer induced sidechain motions: one or more rotamer changes were observed in

46% of tests, and up to four rotamer changes per test were observed. These results

highlight the value of combined continuous backbone and sidechain flexibility, as
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opposed to just continuous sidechain flexibility with fixed backbone.

DEEPer is implemented as part of the Donald lab’s OSPREY (Open Source

Protein Redesign for You) software package (Gainza et al., 2012).
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Figure 3.15: Sequence-design run on 2bgx (E. coli AmiD). The backbone of the
lowest-energy conformation moved away from the starting conformation for residues
126-131. The lack of continuous flexibility in this run allows display of all searched
backbone conformations. Starting structure, black/gray; complete searched ensem-
ble, purple; GMEC, pink. Here and in Figure 3.16, green balls demarcate flexible-
backbone regions; sidechains outside these regions are omitted for visual clarity.
Made for (Hallen et al., 2012).
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Figure 3.16: Ensemble-generation run on 2ixt (L. sphaericus sphericase). The
low-energy ensemble of computed models was fairly wide at residues 157-160 and
spanned the crystallographic alternates. The GMEC was on the fringe of the ensem-
ble. Starting structure, black/gray; low-energy ensemble, blue; GMEC, pink. Made
for (Hallen et al., 2012).
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3.7 Discussion

I have described the shear, a primarily helical local backbone motion, and compiled

ample and diverse evidence for its existence in experimental crystal and NMR struc-

tures. In collaborative work, I have also demonstrated its ability to help discover

lower-energy sequences and conformations in protein design.

Both shears and backrubs are geometric simplifications of the actual underly-

ing mechanisms, with the virtue of being more suitable for in silico manipulations.

However, compared to backrubs, shears describe a more complex molecular motion

that affects a larger local region (three peptides instead of just two). Shears are

correspondingly less common in deposited structures because it is currently more

difficult for crystallographers to model alternate conformations for larger regions.

They are likely also rarer in real proteins because, if one assumes each residue may

move roughly independently, larger regions are statistically less likely to move in a

correlated fashion (clearly this assumption is not entirely valid because secondary

structural elements, including helices, are inherently cooperative, but it nonetheless

holds some value).

Nevertheless, I have established a conservative lower bound on the prevalence of

shears, suggesting they are not all that much rarer than backrubs. Because shears

swing backbone parallelly and backrubs push it perpendicularly, these two motions

together form a convenient “basis set” for local backbone movement.

Future work will be needed to ascertain whether shears demonstrably accom-

modate mutations in natural protein evolution and to identify further heretofore

undiscovered modes of local backbone motion.

73



4

Frustrations and Improvements at High Resolution

4.1 Crystallography at high resolution isn’t always easy

As shown in the preceding chapters, proteins retain a significant measure of dy-

namism even in crystals. The evidence lies in high-resolution crystal structures,

which allow one to discern precise atom positions and thereby surmise the existence

of multiple conformations in many cases.

Along with this extra information, however, comes the burden of coalescing it into

self-consistent, physically realistic multi-conformer models. For example, the crys-

tallographic experiment provides no direct evidence as to the correlations and anti-

correlations between observed alternate conformations, so external information in the

form of steric contacts must be introduced. Furthermore, atomic occupancies must

be set carefully to avoid implying illogical atomic overlaps (Figure 4.1). The prob-

lem is exacerbated in larger structures, where larger, more difficult-to-disentangle

networks of coupled alternate conformations become possible (Figure 4.2).

Unfortunately, most existing refinement packages and related tools are insufficient

to optimize networks of adjacent alternate conformations, so crystallographers are
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Figure 4.1: Asp344 and Glu348 of xylose isomerase (1muw) are clearly visible in
the 0.86 Å resolution electron density map. They are assigned A and B alternate
conformation labels, respectively, implying they are mutually exclusive for this region
of space. However, their occupancies sum to ą 100%, implying they must co-exist at
least 3% (or up to 43%!) of the time; such a situation would have unfathomably high
energy and therefore would essentially never occur in reality. These occupancies are
thus incorrect and must be adjusted, e.g. to 60%/40% or 57%/43%, to eliminate the
logical fallacy in the model.
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Figure 4.2: Large structures enable large coupled alternate networks. A simple
program was used to group alternate conformations into connected regions/networks.
The x-axis shows the number of such regions if residues are grouped together only if
they are adjacent in sequence. The y-axis shows the number of such regions if residues
are grouped together if they are adjacent in sequence or in three-dimensional space
(i.e. some pair of atoms from the different residues are within 3 Å of each other). The
data set consists of the “A” chains from the same 54 ultra-high-resolution structures
used in Section 3.4. Points are scaled based on the total number of residues in the
chain. Intriguingly, alternate networks are significantly spatially intertwined (points
well below the diagonal line) only in relatively large structures such as 1gwe (labeled;
see Section 4.3).
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typically left to manually define those relationships as best they can. The result is

that very high-resolution structures break the trend of improving model quality with

improving resolution. As the number of high-resolution structures continues to rise,

this deficiency will become increasingly troublesome.

Clearly new approaches are needed for dealing with the conformational multiplic-

ity associated with high-resolution structures. To that end, this chapter describes a

collaborative initiative I participated in to compile a set of “paragon” structures, free

of any definable defects. My efforts to bring nearly perfect structures to full paragon

status helped define a roadmap for future efforts at designing tools for automated

high-resolution structure modeling and refinement.

4.2 The quixotic quest for “paragon” structures

The paragon project is an initiative undertaken by our lab and collaborators nearby

and at Virginia Tech to collate crystallographic models that have attained perfec-

tion. Such sought-after models are completely devoid of any demonstrably incorrect

rotamer, Ramachandran, and bond length/angle outliers; steric clashes; and Cβ

deviations, as judged by MolProbity. They also have self-consistent alternate confor-

mation labels and logically compatible occupancy values for neighboring atoms. The

hope is that paragon structures will serve as gold standards for various downstream

modeling tasks, from bioinformatics studies to drug design to MD simulations.

Out of the ą 70,000 crystal structures in the PDB, only two pre-existing paragons

could be identified: 2zqe and 3iuf. This remarkably low total highlights the striking

difficulty of simultaneously satisfying all of MolProbity’s cadre of stringent require-

ments.

I also identified a “cryptic” paragon, 3kyv, by manually confirming that the

single outlier in the structure, for the Lys2 rotamer, was actually a rare occurrence

(ă 1%) of a genuine rotamer outlier (Figure 4.3). This case exemplifies the fact
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Figure 4.3: The only putative error flagged by MolProbity in 3kyv, a 1.10 Å
neutron diffraction crystal structure of perdeuterated rubredoxin, is a rotamer outlier
for Lys2 (orange). However, several lines of evidence suggest it is a valid conformer:
the electron density contoured at 1.2 σ (gray mesh) and 3.0 σ (purple mesh), and
hydrogen bonds (green “pillows” from Probe and translucent lines) to the backbone
CO of a preceding residue, the sidechain of Asp13 (cyan), and an ordered water
(brown ball, B-factor ă 43). 3kyv therefore qualifies as an error-free “paragon”
structure.

that outliers in our torsional distributions may occasionally be valid conformations,

if compensated by local stabilizing interactions.

Another class or paragons was created by fixing the dusting of errors in a small

set of nearly error-free, mostly high-resolution “near-paragon” structures. For ex-

ample, Jane Richardson cleaned up the only error in 1akg with a single Pro ring

flip, and Lindsay Deis repaired 1ubq with 6 manual rotamer changes and 5 Probe-
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recommended amide flips.

4.3 Approaching paragon quality for a large structure

To complement these relatively small paragons, I set out to repair 1gwe (Murshudov

et al., 2002), a 0.88 Å structure of catalase. This protein has 503 residues, ą 800

waters, 3 sulfates, and 1 heme per monomer; moreover, it functions as a tetramer.

The structure has above-average quality for its resolution, with a MolProbity

score in the 70th percentile. However, due to its large size, that still translates into

a significant number of errors to address. The problem is exacerbated by the non-

linear growth of potential conflicts between alternate conformations as a function of

protein size (Figure 4.2).

Altogether, I ended up making over 40 changes to 1gwe. The resulting model

still does not achieve strictly defined paragon status (Figure 4.4), but the process

shed light on the features that next-generation high-resolution refinement tools must

include.

First of all, there are no Ramachandran outliers, but all 13 residues with merely

allowed (instead of favored) φ,ψ according to MolProbity were well supported by

the electron density, and all but Pro60 were backed up by strong H-bonds (more

than one in all cases but one). Interestingly, although most of these residues remain

merely allowed using the new Top8000 Ramachandran distributions, Pro60 becomes

favored using the new separate cis Pro distribution (see Chapter 5). Likewise, there

are three rotamer outliers, but they are well validated by electron density, van der

Waals packing, and H-bonds, and are therefore genuine outliers rather than errors.

These torsional oddities aside, many of the errors in the original deposited struc-

ture, and especially the most egregious ones, involved alternate conformations. For-

tunately, some alternate-related fixes were quite simple to perform once the problem

was identified. For instance, some waters were simply assigned the wrong alternate
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Figure 4.4: Near-complete paragonization of catalase. The deposited structure
1gwe (left) is above average for its resolution (0.88 Å), but nonetheless has several
errors. The improved model (right) corrects many of these errors but still has a few
probably unavoidable clashes.

label given their surroundings (Figure 4.5); in these cases a simple reassignment,

e.g. from alternate A to alternate B, was sufficient to resolve the inconsistency. A

similarly simple-minded example is Leu105, for which the sidechain and backbone

alternate labels were accidentally swapped by the crystallographer(s); again, a simple

reassignment solved the problem (Figure 4.6).

Apart from some such “low-hanging fruit”, most errors required actual coordinate

changes to repair. For example, many local dipeptides were modeled with a single

backbone in spite of having alternate sidechains; as discussed previously (Davis et al.,

2006) (see also Section 2.2), backrubs may better model the backbone in many such

cases. Problem areas of this sort were often easily flagged by identifying concen-

trations of bond length and angle strain and ends of dipeptides indicative of misfit

backbone geometry.
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Figure 4.5: Incorrect alternate label for water in catalase. In the deposited struc-
ture 1gwe, HOH 2463 (peach ball) is assigned to alternate A, but that implies a
clash with alternate A of both Tyr277 (left) and Phe279 (right). Those sidechains
appear to have the correct alternate assignments – e.g. Tyr277’s hydroxyl oxygen
has stronger density for alternate A than for alternate B – so the water must be
reassigned to alternate B.

Other missing alternates were more dramatic: they involved entirely unmodeled

rotamers that were nonetheless visible in 2Fo-Fc and/or Fo-Fc electron density. For

example, Arg464 is poorly fit and has clashes to poorly fit waters; a second alternate

in place of those waters, coupled to an automated 180˝ Asn173 flip, not only alleviates

the problems but also introduces several well-formed H-bonds (Figure 4.7). This

type of convergence – with errors disappearing and favorable interactions surfacing –

strongly suggests that my changes are genuine corrections, resulting in a model that

more closely represents the real protein.
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Figure 4.6: Swapped sidechain-mainchain alternate labels in catalase. Top: The
original alternate conformations for Leu105 are mismatched – the A sidechain is
matched with the B backbone and vice versa – resulting in Cβ deviations ą 0.4 Å.
Bottom: Simply swapping the backbone alternate labels solves the problem.
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Figure 4.7: Hidden alternate Arg sidechain in catalase. Top: In the deposited
structure, the Arg464 sidechain (cyan, right) is a poor fit to the negative Fo-Fc
density (orange). Two waters (tan balls, middle) are also poor fits to the positive
Fo-Fc density (blue) and to very weak 2Fo-Fc density (gray, purple) compared to
a well-ordered water (top/background); as a result, they clash (pink spikes) with
Arg464. Bottom: Replacing the waters with an alternate Arg464 sidechain (cyan,
middle) nicely fits the density. After a concomitant amide flip of the adjacent Asn173
(cyan, left), favorable H-bonds (green pillows) are formed, completing the refit.
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In a similar but more elaborate example, Arg486, Glu483, and Glu448 should

be part of an alternate sidechain network (Fraser et al., 2011) but only the latter is

deposited with alternates (Figure 4.8). Several clashes and poor fit to the density

flagged this region as suspicious. I reconstructed the network by adding an alternate

B for Glu483, swapping alternate labels for Glu448 based on its interactions with

Glu483, adding an alternate A water to be mutually exclusive with Glu483 alternate

B and form an H-bond with a nearby amide, adding an alternate B for Arg486,

and adjusting occupancies for all sidechains and waters to be consistent across the

network (Figure 4.8).

In this example, alternate A should certainly be assigned a slightly higher occu-

pancy than alternate B based on differences in electron density; I chose a collectively

exhaustive 70% and 30% based on visual inspection. Yet if additional low-level

“hidden” conformers also exist (alternates C, D, ...), then the occupancies for al-

ternates A and B should add to something less than 100%, though A should still

be higher than B. This issue is directly germane to eliminating logical fallacies like

steric clashes. For example, two alternate sidechains from adjacent residues with

a mutually exclusive atomic overlap would clash if they both had 51% occupancy

(with a second alternate at 49%) regardless of which alternate states they were as-

signed to, because they would by implication co-exist in the molecule at least some

fraction of the time (at least 2% and at most 51%). However, they would not clash

if they both had 49% occupancy (with a second alternate at 41% and a minor third

at 10%), since they could then exist in the molecule at different times (i.e. belong to

different alternate states). Unfortunately, optimization of occupancy assignments is

far from a solved problem, in part because most crystallographers instead choose to

simply refine B-factors when mobility appears to be present. Therefore, identifying

or inferring the presence of additional conformers will be critical to future efforts at

creating self-consistent alternate networks.
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Figure 4.8: Extension of an alternate network in catalase. Top: The deposited
structure (1gwe) has 50%/50% alternate conformations (green: A, purple: B) for
Glu448, but single conformations for the adjacent Glu483 and Arg486 – this in spite
of severe steric clashes (pink) and poor fit to the negative (orange) and positive
(blue) Fo-Fc electron density. Middle: The refit model has alternate conformations
for all three coupled sidechains with consistent 70%/30% occupancies. An alternate
A water (green ball in middle) that is mutually exclusive with Glu483 alternate B
and forms an H-bond with the nearby Glu488 (top) has also been added. Bottom:
Re-refinement with the refit model eliminates many of the difference density peaks.
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Relationships between alternate conformations are evaluated in light of contacts

between adjacent sidechains, which are typically effected by hydrogens. Unfortu-

nately, hydrogen atoms are usually invisible in crystallography. However, at ultra-

high resolution, as with with 1gwe at 0.88 Å, I was able to see evidence for hydrogen

positions in the form of positive Fo-Fc density peaks, and thereby evaluate the suc-

cesses and failures of automated hydrogen placement by Reduce (Word et al., 1999a).

I soon discovered that some apparent steric clashes were due to simple mistakes in

Reduce.

For example, Reduce’s Hβ hydrogens for Trp216 imply clashes with the surround-

ings in both directions that cannot be alleviated by χ1 tweaks (Figure 4.9, top). I

explored the possibility that these hydrogens have relatively unique chemical char-

acter due to strain in the Cα-Cβ-Cγ bond angle, but Trp216’s Cα-Cβ-Cγ is actually

quite typical for its χ1 bin (Figure 4.9, bottom). It seemed quite likely, then, this

problem derives from the original choice to use hydrogen bond-lengths based on the

positions of nuclei instead of the centers of electron clouds in Reduce (Word et al.,

1999a) and van der Waals radii compatible with those bond lengths in Probe (Word

et al., 1999b). Other members of the Richardson lab, including Lindsay Deis and

Bryan Arendall, have now worked with members of Jack Snoeyink’s lab, including

Vishal Verma, to address this problem by updating Reduce’s hydrogen bond-lengths

(and Probe’s van der Waals radii accordingly) such that they at least roughly match

both those in PHENIX and those implied by spherical fits to quantum-mechanics-

derived electron density maps computed by Nigel Moriarty for simple systems such

as isolated amino acids. To further investigate 1gwe Trp216, I used their preliminary

updated versions of Reduce and Probe (informally dubbed Reducer and Prober),

which for methylene hydrogens have shorter hydrogen bond-lengths by 0.13 Å and

longer van der Waals radii by 0.05 Å. Indeed, the Trp216 Hβ clashes are resolved,

supporting the idea that the problem in this case was with the details of our all-atom
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Figure 4.9: Wrong bond lengths for Trp Hβs in catalase. Top: The hydrogens
Reduce places on the Cβ of Trp216 in 1gwe clash with the nearby Ile269 Hβ (left)
and the Thr204 Cγ2. All three heavy atoms – Trp216 Cβ, Ile269 Cβ, and Thr204
Cγ2 – are well supported by the 2Fo-Fc density, so the problem is not with their
positioning. Bottom: Trp216’s Cα-Cβ-Cγ bond angle is normal given that its χ1 is
in the m bin, so its Hβs would not be expected to flex closer to or farther away from
the Cα-Cβ-Cγ plane relative to expectation. Subsequent analysis with preliminary
updated C-H bond-lengths and van der Waals radii (not shown) showed that the
precise details of our all-atom contact parameters were at fault.
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contact parameters.

In a similar category, Reduce incorrectly added hydrogens to methyls on the

central heme in an orientation in which one hydrogen was fully eclipsed instead of

having one fully staggered and the other two about 30˝ from eclipsed (Figure 4.10).

Aram Han of Jack Snoeyink’s lab has now addressed this issue in the Reduce code.

Other methyls were very close to correct in perfectly staggered orientations, but

required minor tweaks (ă 10˝ rotation) in response to local packing constraints. For

example, Ile55 has an unacceptable steric clash to a nearby Gln methylene group; a

small methyl rotation resolves the clash and fortuitously falls directly onto a positive

Fo-Fc peak (Figure 4.11). Reduce needs to be quite conservative when it comes

to methyls – automated methyl rotations are turned off by default since they have

been observed to go awry frequently and easily if the attached heavy atom is not

placed quite perfectly – so I coded a new methyl-rotation tool in KiNG to manually

remodel the problematic methyls in catalase. This illustrative example happens to

be at a tetrameric contact (see below), but a few other similar ones occurred in

buried monomeric regions.

Similarly, some hydroxyls were misplaced because Reduce failed to completely

account for their surroundings. To wit, Ser397’s hydroxyl is appropriate considering

just the asymmetric unit, but it becomes obvious it is impossible in the context of

the biological tetramer (Figure 4.12). This failure occurs because Reduce usually

operates on the asymmetric unit only. Vishal Verma of Jack Snoeyink’s lab has now

addressed this issue by encoding space group symmetry consideration in Reduce; the

new version is being tested within PHENIX and should be available in MolProbity

soon.

As alluded to in the past two examples, I performed my initial batch of fixes

and Reduce runs on the 1gwe asymmetric unit, but catalase is actually a biological

tetramer. Reproduction of a tetramer unit cell for my fixed-up model through space
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Figure 4.10: Heme methyl rotation to alleviate clash in catalase. Top: Reduce
places the hydrogens on the CMC methyl group of the central heme such that one is
fully eclipsed and thus clashes with the adjacent methylene group. The positive Fo-
Fc density peaks (blue) strongly corroborate MolProbity’s clash in refuting Reduce’s
placement. Bottom: A manual refit more correctly places the methyl hydrogens in
the one of its two possible non-eclipsed positions that better fits the Fo-Fc density.
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Figure 4.11: Ile methyl rotation to alleviate tetramer clash in catalase. Top: Ile55
(right) has a clash to Gln375’s Cγ hydrogens (right) given Reduce’s default hydrogen
placement. Bottom: A small (9˝) rotation eliminates the clash and fits a positive
Fo-Fc density peak (blue).
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Figure 4.12: Ser hydroxyl rotation at tetrameric contact in catalase. Top: Given
Reduce’s default hydrogen placement, the hydroxyl hydrogen of Ser397 (middle) from
chain A (white backbone) clashes with that of adjacent Thr11 (left) from chain B
(yellow backbone). Bottom: An « 80˝ manual hydroxyl rotation fits a positive Fo-Fc
density peak (blue), eliminates the clash to Thr11 and establishes an H-bond in its
place, and also establishes an H-bond to Ser13 (right) of chain B.
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Figure 4.13: Tetrameric crystal contacts in near-paragon catalase. The deposited
structure 1gwe (left) is improved upon by the refit model (middle) in terms of clashes,
but reconstructing the biological tetramer (right) reveals several clashes at tetrameric
crystal contacts, the worst of which (e.g. red clashes at very center of rightmost panel)
are due simply to naming issues (see Figure 4.15).

group symmetry revealed a smattering of “new” clashes that arose at intermolecu-

lar/crystal contacts (Figure 4.13). Some of these, such as the methyl and hydroxyl

rotations described above, required relatively simple atomic coordinate changes to

address.

However, a pair of remaining clashes are caused by the more subtle problem of

“local asymmetry”, a phenomenon which has also been noted in other homooligomers

(Goodsell and Olson, 2000). The first centers around the Leu105-Gly106 peptide,

which is adjacent to a two-fold axis of symmetry within the unit cell. Because of this

unusual location, Leu105 in chain A clashes with another symmetry-related copy of

itself in the adjacent chain B (Figure 4.14, left). In the real molecule, it is clear

that what is labeled alternate A in chain A must actually be paired with what is

labeled alternate B (not A) in chain B. To model this in the structure, one must swap

the alternate labels in either chain A or chain B (Figure 4.14, right). As noted by

the depositors (Murshudov et al., 2002), however, such a change would destroy the
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Figure 4.14: Broken symmetry for Leu105 at tetramer contact in catalase. Left:
The near-paragon model has “self clashes” between alternate A of Leu105 in chains
A and B. Right: The problem can be alleviated by effectively swapping half the
alternate labels, but the original space group is no longer valid by the same logic
described for Figure 4.15.

space group symmetry and necessitate a tetrameric unit cell with a different space

group. Strictly speaking, then, the current P42212 space group is inappropriate.

Intriguingly, this backbone non-uniqueness is conserved among many catalase species

and is adjacent to highly conserved, catalytically essential residues, so it may in fact

be functionally relevant (Murshudov et al., 2002). Tyr378 is an analogous case with

a sidechain-sidechain instead of backbone-backbone clash (Figure 4.15), although in

this case the local non-uniqueness is not thought to be functionally relevant based

on the distance from the active site.

Subsequent re-refinement of my paragonized model with PHENIX (Adams et al.,

2010) led to very minor coordinate changes: most atoms moved less than 0.5 Å

and the vast majority moved much less than 0.1 Å. My fixes were therefore quite

compatible with the experimental data.
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Figure 4.15: Broken symmetry for Tyr378 at tetramer contact in catalase. Left:
The near-paragon model has “self clashes” between alternate A (green) of Tyr378 in
chain A (top-right, white backbone) and alternate A of Tyr378 in chain B (bottom-
left, peach backbone). This occurs because Tyr378 happens to coincide with an
axis of symmetry for the tetramer, such that instantiating alternate A implies an
impossible model. Right: The problem can be alleviated by effectively swapping
half the alternate labels, i.e. assigning alternate B (purple) to one of the two original
alternate A sidechains. Now alternate A and alternate B each imply a possible model,
but the original space group – by which these symmetric chains were placed by a
sequence of rotations and translations – is no longer valid because the subunits are
no longer truly identical.
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4.4 Discussion

High-resolution data in crystallography (typically defined as better than 1.2 Å) con-

tains information about small inter-atomic spacings, so is is usually very desirable

for a crystallographer who wishes to define his/her protein’s structure as accurately

as possible.

However, the increased atomic discernment possible at high resolution also reveals

the presence of well-populated substates that would be obfuscated or invisible with

medium- or low-resolution data. Alternate conformations are identifiable even in

the best structures in sets of no more than about 3 and with no less than about

10% occupancy; because a 90%-to-10% ratio implies an energy difference of only

about 2.2 kT, these observable conformations co-exist with nearly equal energies.

Therefore, with greater power to discern atomic positions comes greater responsibility

to coalesce multiple conformations from the native-state ensemble into a cohesive

structural model.

We were forced to consider this tradeoff in our quest for paragon structures (Sec-

tion 4.2), which are essentially “Platonic ideals” with no detectable errors whatsoever

(given our assumptions about physics and chemistry as encoded in MolProbity, the

limitations of the PDB file format, etc.). Indeed, the only pre-existing, ready-made

paragons we identified were at medium-to-high resolution, where only a single con-

formation was visible.

On the other hand, my efforts to create a paragon starting from the 0.88 Å

structure 1gwe (Section 4.3) highlighted the complexities of dealing with networks of

often mutually exclusive alternate conformations. In failing to eliminate literally all

MolProbity errors, I also stumbled upon several modeling issues that should probably

be reconsidered, among them the hydrogen bond-lengths used by Reduce and how

to assign space groups when alternate conformations occur at axes of symmetry.
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The failed effort to completely “paragonize” 1gwe was thus very educational, and

should inform near-future efforts to build more powerful tools for defining multi-

conformer models. Ideally, such an algorithm would be able to automatically model

convoluted alternate networks based on repulsive steric clashes, attractive H-bonds

or charge-charge interactions, presence vs. absence of ordered solvent molecules, and

other factors. Ultimately, the multi-conformer models made possible by these ad-

vances will be a rich data source for understanding the broad biological implications

of near-native-state conformational ensembles in proteins.
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5

Torsional Bioinformatics

5.1 Torsional validation in MolProbity

Accurate macromolecular structural modeling is impeded by many obstacles; chief

among them are the vastness of conformational space and the difficulty of efficiently

and precisely evaluating free energies. The magnitude of the conformational search

space varies widely by application: ab initio protein structure prediction requires

large fractions to be considered, whereas crystallographic refinement typically focuses

on conformations relatively similar to the model being refined. However, essentially

every protein modeling task involves a scoring component in which various competing

conformations are weighed and counterweighed based on their free energies (or, when

entropy is ignored (Hu and Kuhlman, 2006), simply energy, i.e. internal energy or

enthalphy). For example, proposed conformational or configurational changes, such

as small backbone movements, rotamer jumps, and/or mutations, may be accepted

or rejected based on their computed energies, ultimately leading to the overall lowest-

energy conformation and/or sequence.

Unfortunately, this step remains difficult, because accurate methods deeply rooted
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in state-of-the-art physicochemical theories are too computationally expensive to be

extensively used, and simplified versions using only classical physics and idealized

chemistry are often too inaccurate for precise atomic-level calculations. Various

approaches to scoring functions have been attempted, with different strengths and

weaknesses.

Molecular mechanics force fields such as Amber (Cornell et al., 1995) (see Sec-

tion 2.4) use a simple functional form comprised of additive contributions from var-

ious physicochemical forces: harmonic restraints on bond lengths, angles, and most

dihedrals; van der Waals attraction and repulsion with a 6-12 Lennard-Jones poten-

tial; and Coulombic electrostatic interactions between atom-centered point charges.

The coefficients on these terms, which determine the relative contributions of different

energetic influences, are generally derived by choosing values resulting in simulations

that better reproduce experimental thermodynamic measurements for very simple

systems.

An alternative philosophy is hybrid physical-statistical scoring functions (use of

the phrase “energy functions” to describe such systems is considered passé in some

quarters). This genre is best exemplified by Rosetta (Rohl et al., 2004), which uses

two separate scoring functions with different granularity, the first to generate plau-

sible folds in the initial stages of ab initio structure prediction, and the second to

refine proposed conformations in the neighborhood of the native conformation. In

the low-resolution/reduced-representation scoring function, a sidechain centroid is

used to represent each residue, and solvation, electrostatic, and H-bonding effects

are modeled probabilistically on a residue level. To propose plausible conforma-

tions for local regions, Rosetta borrows “fragments” from experimentally determined

structures; importantly, it is assumed that these conformations implicitly reflect the

most important local energetic considerations, and therefore that intra-fragment en-

ergetic evaluation is unnecessary. In the high-resolution/all-atom scoring function,
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by contrast, explicit van der Waals and H-bond terms and an implicit solvation

term (Lazaridis and Karplus, 1999) play critical roles. At this stage, relying on im-

plicit energetics within fragments is insufficient, because even small torsional changes

resulting from minimization may have large energetic effects; therefore, probabilistic

Ramachandran (φ and ψ angles) and rotamer (χ angles) terms are used instead. This

two-pronged approach to “energy” evaluation, coupled with fast (albeit incomplete)

conformational search, has enabled much of Rosetta’s well-documented success.

Keating and colleagues have taken a quite different approach that has enabled

rapid evaluation of the energy of an arbitrary sequence on a given backbone fold (Grig-

oryan et al., 2006). They first used the deterministic DEE and A* algorithms to find

the optimal rotamer combinations for tens of thousands of sequences threaded onto

the backbone of interest, using a structure-based (e.g. molecular mechanics) en-

ergy function. After this one-time computational investment, they were able to fit

a simple linear model relating sequence to energy by assigning weights on terms for

various singles, pairs, triple, etc. of amino acids at specific residue positions. The

result was ultra-fast energy evaluation (a factor of 107 speed-up) for any given se-

quence on the backbone used for training, but there was a cost in accuracy (on the

order of 1-5 kcal/mol) relative to the energy function being approximated. However,

given that the types of energy functions used for structure-based protein design are

themselves imperfect, the authors argued that this fitting error is acceptable in light

of the massive gain in speed.

Our response to the hurdles of evaluating macromolecular energetics is to learn

what conformations are realistic – and which ones aren’t – directly from experimental

structures themselves. MolProbity (Chen et al., 2009c) embodies this approach with

a conglomeration of empirically based assessments.

Expected bond lengths and angles involving protein backbone heavy atoms are

taken from standard values (Engh and Huber, 2001), which are derived from polypeptide-
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like fragments of small-molecule crystal structures in the Cambridge Structural Database

(CSD) (Allen, 2002). The Cβ deviation, a measurement of proper tetrahedral ge-

ometry at the Cα locus (Lovell et al., 2003), is computed relative to an ideal Cβ

position that is defined by a combination of these ideal backbone parameters.

Similarly, the covalent bond lengths and angles used to place hydrogens (Word

et al., 1999a), which are invisible to most crystallographic experiments, and the van

der Waals radii used to subsequently evaluate all-atom non-covalent packing inter-

actions (Word et al., 1999b; Bondi, 1964), the majority of which involve hydrogens,

are based on empirical distributions in small-molecule crystal structures. However,

these parameters reflect nuclear positions rather than centers of the electron clouds,

which actually underlie inter-atomic steric interactions, and are therefore slightly

too long at present. Therefore, work is ongoing by other members of the Richardson

lab and our collaborators to define shorter, electron-cloud-centric bond lengths –

and correspondingly longer van der Waals radii – that will be more appropriate for

macromolecular structure validation.

MolProbity also makes strong use of four-body torsions for validation: particular

local conformations are compared against empirical distributions of φ and ψ back-

bone dihedrals and χ sidechain dihedrals. Because these distributions have been

derived using high-resolution, quality-filtered protein crystal structures, they are re-

liably useful for structure validation: we can claim with confidence that outliers

falling outside their populated regions are at best unusual and at worst erroneous.

Such forbidden regions can be roughly mapped based on implied steric clashes in

theoretical conformers with given torsional combinations, but their precise bound-

aries are best defined using large amounts of good data in the form of high-quality

crystal structures.

In this chapter, I describe updates to these almost decade-old torsional distribu-

tions, made possible by the continuing expansion of individual and high-throughput
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structural biology efforts. The new versions do not radically alter our concept of

protein backbone and sidechain energetics, but they do qualitatively improve our

ability to distinguish conformations that are disfavored but possible from those that

are surely disallowed.

5.2 Building a bigger and better data set

The Protein Data Bank has grown rapidly in the years since the Richardson lab’s

most recently published quality-filtered structural database for proteins, the Top500

(Lovell et al., 2003). In 2007, lab members attempted to take advantage of this new

data by creating the Top5200. It maintained similar standards of resolution and

structure quality but, due to sheer logistics, required a more automated selection

protocol that made use of PDB homology clusters (updated weekly) and MolProbity

score. Unfortunately, chains with MolProbity score ą 2.0, up to ą 2.7 in some cases,

were unintentionally included – although only chains from structures with resolution

ă 2.0 Å were included, as intended. In 2010 I helped implement a stop-gap successor,

the Top4400, by simply eliminating all chains in the Top5200 with MolProbity score

ą 2.0. This database was inherently suboptimal because no attempt was made to

find suitable replacements.

The Top5200 was used for my investigations of mutation-coupled backrubs (Chap-

ter 2) and the Top4400 was used for the Validation Task Force paper (Read et al.,

2011), and both have been distributed informally to collaborators, but otherwise

neither was fully accepted as our next-generation database (e.g. neither is available

on our website).

To facilitate new structural bioinformatics studies, we have now constructed the

Top8000 databases of high-quality protein structures. We ran Reduce (Word et al.,

1999a) on all crystal structures in the PDB as of March 29, 2011 containing at least

one protein chain with ě 38 residues (according to the MolProbity “oneline” script),
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in order to allow Asn/Gln/His flips (reduce -flip) throughout the structure, in-

cluding at interfaces where multimer partners may participate in hydrogen-bonding

networks. Single protein chains were then extracted along with any “het” atoms or

waters with the same chain identifier.

Next, for each chain, a MolProbity score (Davis et al., 2007; Chen et al., 2009c;

Keedy et al., 2009) (see also Section 6.2) was calculated. This score is an estimate of

the resolution at which a structure’s steric clashes, rotamer quality, and Ramachan-

dran quality would be average. Thus the average of resolution and MolProbity score

is a combined experimental and statistical indicator of structural quality.

In terms of filtering, chains that were marked by the PDB as obsolete as of

April 13, 2011, from structures retracted in the Murthy (University of Alabama at

Birmingham) falsification scandal (http://www.wwpdb.org/UAB.html), atomically

incomplete (ă 25% of residues with sidechains), or too short (ă 38 residues) were

eliminated. Finally, the PDB’s chain-level homology clusters as of March 29, 2011

(actually released earlier that week on March 25, 2011) were downloaded.

After conversations within the lab, we required each chain to have resolution ă

2.0 Å, chain MolProbity score ă 2.0, ď 5% of residues with bond length outliers

(ą 4σ), ď 5% of residues with bond angle outliers (ą 4 σ), and ď 5% of residues

with Cβ deviation outliers (ą 0.25 Å). We then selected the best chain (in terms

of average of resolution and chain MolProbity score) per homology cluster. There

was a small number of ties within clusters (for ă 1% of the final chain tallies); these

were resolved, arbitrarily but reproducibly, by alphabetical order of PDB code +

single-character chain ID.

The step of selecting the best chain from each homology cluster was done sepa-

rately for the 50% (“most stringent” homology filtering), 70%, 90%, and 95% (“least

stringent” homology filtering) clustering levels. The homology filters, to varying

levels, prevent redundancy and thus over-representation of certain motifs or sub-
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structures. Moreover, by comparing the results of a bioinformatics study with the

different homology filters, one can consider the influence of evolutionary relatedness

on a given feature’s prevalence as opposed to simple energetic favorability; our pre-

vious data sets were collated using only the 70% filter and therefore did not allow

such analysis.

Availability of electron density maps from the Electron Density Server (EDS) (Kley-

wegt et al., 2004) was tabulated but not used for selection for the “primary” versions

of the Top8000. However, a set of “secondary” versions was also compiled in which

the availability of a map in the EDS was required during the database creation pro-

cess for each entry. Map availability could also be used as a less arbitrary tiebreaker

(see above) for future data sets, since a lack thereof could suggest that the authors

were reluctant to deposit their diffraction data or that the EDS was unable to suc-

cessfully produce an acceptable map given the deposited data, either of which is

worrisome.

Originally a filter was planned to eliminate “suspiciously good” chains with res-

olution better than 1 Å, chain MolProbity score = 0.5 (the optimal score), and

clashscore = 0 (the optimal score). However, we determined that such a filter would

eliminate several true “paragons” (truly error-free models), and thus we did not use

it.

The “geometry” filters (bond lengths and angles and Cβ deviations) were not

used in the Top500, Top5200, or Top4400 – they are new to the Top8000. Fortu-

nately, although these filters eliminate a substantial number of individual chains,

they eliminate a remarkably small number of homology clusters; this is because in

many such clusters, some other chain passes the geometry filters, and thus can rep-

resent the cluster. We therefore gain in quality within each cluster with little loss in

quantity of clusters.

Chain MolProbity scores, as opposed to file MolProbity scores, were used here,
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Table 5.1: Residue counts in Top8000 versions vs. older data sets. *Our most-used,
default set, with approximately 8000 chains, hence the name Top8000.

Data Set EDS Homology Chains Residues Residues
Requirement Filter (no filter) (mc B ă 30)

Top500 no 70% 500 109,799 97,368
Top5200 no 70% 5199 1,195,418 1,176,398
Top4400 no 70% 4,403 1,010,596 974,917
Top8000 no 50% 7,232 1,686,207 1,430,119
Top8000 no 70% *7,957 1,858,193 1,573,349
Top8000 no 90% 8,562 1,990,507 1,680,600
Top8000 no 95% 8,825 2,041,499 1,720,878
Top8000 yes 50% 6,107 1,444,973 1,228,077
Top8000 yes 70% 6,663 1,575,216 1,336,807
Top8000 yes 90% 7,138 1,678,587 1,419,978
Top8000 yes 95% 7,342 1,719,227 1,451,433

although in the future, other lab members may investigate some alternative that

accounts for both or applies some average chain MolProbity score “correction factor”

differentially for chains from single-chain vs. multi-chain structures.

Table 5.1 contains the final counts of protein chains and protein residues (with-

out and with a mainchain B-factor ă 30 filter, for Ramachandran analysis) in the

Top8000 versions without the EDS requirement (the “standard” or “normal” version)

and with the EDS requirement (a special-case use version) as compared to previous

data sets.

All Top8000 single-chain PDB files plus additional chain- and residue-level data

are available in the supplemental material for this thesis.

5.3 Updating Ramachandran analysis

One of the earliest observations pertaining to protein structures, coming nearly 50

years ago (with its official 50th anniversary celebration in Bangalore in January

2013), was that mainchain φ and ψ torsion angles are highly correlated and that φ,ψ
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Figure 5.1: The Ramachandran archipelago. “Land” represents favored regions,
“shores” represent allowed regions, and “water” represents sterically or otherwise
disallowed regions. The highest “snow-capped peak” is α helix; the next-highest are
β sheet and polyPro. Credit: Ian Davis.

pairs fall only into certain specific regions of the “Ramachandran plot” (Ramachan-

dran et al., 1963). Topographically speaking, the two most prominent mountains

correspond to α helix and β sheet, other shoals and plateaus correspond to less

populated but still nonetheless genuinely observed conformations, vast oceans are

almost entirely vacant due to local steric repulsions between backbone atoms, and

ocean shores represent energetically unfavorable conformations that are occasionally

observed because of compensating favorable interactions such as hydrogen bonds

(Figure 5.1).
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The Ramachandran plot has proved invaluable for a cornucopia of protein struc-

ture modeling tasks. For structure prediction and design, one would like to accurately

estimate the most likely conformation for a given residue. To do so, it can be useful

to compile a separate φ,ψ distribution for each amino acid type, and perhaps even a

separate sub-distribution for each neighboring amino acid type (Ting et al., 2010).

However, despite the size of the PDB, this approach can still be difficult due to insuf-

ficient availability of well-determined residues in high-resolution structures that thus

have precisely positioned backbone atoms. One solution is a Bayesian approach that

deviates from global expectation only when the data is sufficient to support such a

conclusion (Ting et al., 2010).

The goal of structure validation, on the other hand, is to determine whether or

not the conformation of a given residue in a known structural model is reasonable,

by cleanly differentiating energetically disfavored but allowed values (that generally

avoid clashes by opening bond angles slightly) from those that are physically pos-

sible only under very unusual local circumstances. This differs fundamentally from

validation using the entire distribution, in which a structure would be scored based

on its adherence to the database-wide distribution; such an approach would be in-

appropriate not just for unusual/iconoclastic structures, but for any structure that

did not adhere quite closely to database-wide averages of secondary structure and

amino acid content (e.g. an all-helical structure, or one without any helices).

For example, the γ turn (Figure 5.2), in a sparse positive-φ region of the Ra-

machandran plot below Lα, is labeled a serious outlier by ProCheck, which uses

unsmoothed distributions made with older, unfiltered data (Laskowski et al., 1993).

However, it is disfavored but allowed according to MolProbity, which uses smoothed

distributions made with more, quality-filtered data (Lovell et al., 2003); that contin-

ues to be true in my new Top8000-based distributions (see below). This statistical

analysis reflects the underlying chemical reality that the γ turn’s i-1 to i+1 mainchain
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H-bond at least partially countervails its steric strain (Figure 5.2).

As a result, the outer fringes of the distributions are of more pressing interest for

validation than are the peaks, so it is preferable to avoid the problems associated

with insufficient data for rare amino acids, and instead compile a minimal set of

categories in order to better define the “shores”. Most residues can be collapsed

into a “general case” category, with separate categories only for amino acids with

significantly different distributions. In the past, only glycine and proline were treated

separately (Laskowski et al., 1993; Vriend, 1990; Kleywegt and Jones, 1996), but

residues immediately preceding proline were also singled out from the Top500 (Lovell

et al., 2003), as suggested previously (Karplus, 1996).

However, with an order of magnitude more data than the Top500 (Table 5.1), we

can now more finely subdivide these residue-type categories and still maintain ex-

cellent outer contour definitions for validation purposes. For example, we suspected

that residues with hydrophobic, branched-Cβ sidechains, namely isoleucine and va-

line, could be moved to a separate category, and that proline could profitably be

separated into cis and trans categories; this was tested for the report of the wwPDB

X-ray Validation Task Force (VTF) (Read et al., 2011). I tested this idea using the

Top4400 data set (our most reliable data set available at the time) by comparing

the contours for the 16 amino acids used for the general category (excluding Gly,

Pro, and pre-Pro as always, and now also excluding Ile and Val) to each other. I

observed only minor differences (Figure 5.3), supporting the decision to separate out

Ile/Val and cis vs. trans Pro but to otherwise maintain the paradigm of a “general

case” category. I also investigated including Thr with Ile/Val because it is also has

a branched-Cβ sidechain, but discovered only after looking that its distribution is

more like the general case than like Ile/Val; it is probably the most deviant of the 16

but not badly so. We are fairly sure the cause of this is that the hydroxyl is much

smaller than a methyl or methylene, so that Thr does not have as much steric clash
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Figure 5.2: The γ turn, a rare but possible motif. This example is built with
ideal bond lengths and angles (Engh and Huber, 2001) with φ,ψ near +75˝,-50˝.
Based on our quality-filtered distributions, in many cases the stability gain from the
i-1 to i+1 mainchain H-bond (green pillow) outweighs the stability loss from the
overly tight sidechain-mainchain packing (red dots/spikes) – or from the bond-angle
adjustments that may occur to relieve these repulsive forces in real examples without
ideal geometry – resulting in a low but measurable occurrence frequency.

as Ile/Val do with local backbone. The other six categories have quite unique outer

contours (Figure 5.3) and therefore indeed merit separate treatment.

I subsequently compiled versions of these final six Ramachandran plots using our

currently state-of-the-art data set, the Top8000 (Section 5.2). To achieve smooth

probability distributions with sharply defined boundaries between favorable and for-

bidden areas, I applied kernel density estimation in two passes to both achieve smooth

contours in sparse regions and tightly hug the steep cliff next to helix (Lovell et al.,

2003). In the first step of this method, a cosine of fixed width α0 is placed over

each data point, and the value at each desired grid point is determined by sum-
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Figure 5.3: Outer contours of Top4400-derived Ramachandran plots for specific
amino acid categories; in both panels, the general-case contours are shown as wider
lines (dark blue and purple). (a) Overlapped contours for each of the 16 amino acid
types that are included in the “general” distribution because they match quite well;
98% contours are in dark blue, 99.95% contours in purple. (b) Overlapped contours
for the 6 categories recommended by the VTF (Gly in green, trans Pro in gold, cis
Pro in red, pre-Pro in black, Ile/Val in cyan, and general in wider dark blue and
purple), proposed for separate evaluation because they are each very different. Made
for (Read et al., 2011).

ming all data points’ cosine-based contributions. The second, “density-dependent”

step is similar, but now each data point receives a cosine with a unique width αi

that is inversely proportional to its density value after the first step and scaled by

a constant k. Finally, each grid point is converted from a sum-of-cosines value to a

percentile by computing the percentage of data points that are at lower values. In

general, there is some interplay between the widths of the cosines placed on data

points for the two smoothing passes and the contour levels used to define “favored”

and “allowed” regions. Therefore, we experimented with various combinations, with

the aim of unifying these values across the six distributions to the extent possible.

We ultimately determined it was reasonable to use the same values as before: 10˝ for
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Figure 5.4: Top500 vs. Top8000 general-case Ramachandran plots. Left: Top500
distribution based on 81,234 residues with backbone B-factor ă 30, excluding Gly,
Pro, and pre-Pro. Right: Top8000 distribution based on 1,061,639 residues with
backbone B-factor ă 30, excluding Gly, Pro, pre-Pro, Ile, and Val (see main text).
Smoothed contours encompassing 98% (light blue) and 99.95% (dark blue) of the
data delineate “favored” and “allowed” regions, respectively.

the first-pass cosine width α0, and 13˝ (general case) or 16˝ (other subsets) for the

second-pass k parameter (Lovell et al., 2003). We also maintained the 98% contour

(i.e. the area containing 98% of the data) definition for “favored” in all six distri-

butions, the 99.95% contour definition for “allowed” in the updated general-case

distribution, and the 99.9% contour definition for “allowed” in four of our five other

distributions. However, we switched to a 99.8% contour definition for “allowed” in

the cis Pro distribution; the resulting contour is tolerably smooth and still tight to

the body of the data despite the relatively small amount of data.

The resulting plots reflect over an order of magnitude larger data set than was

originally used in MolProbity (Figure 5.4). Despite this massive increase in data, for

those distributions which are essentially updates to predecessor distributions (general

case, pre-Pro, Gly, to some extent trans Pro), the outer contours are merely refined,
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not radically altered (Figure 5.5). For example, an allowed shoal for +φ and ψ «

+110˝ and a favored peak for +φ and ψ « -130˝ arise for the general case, a new

allowed peak near +75˝, +160˝ appears for pre-Pro, and allowed symmetric plateaus

near φ = 180˝ are significantly extended for Gly (Figure 5.5).

On the other hand, the distributions for Ile/Val and cis Pro are radically dif-

ferent from the distributions with which those residues would have previously been

evaluated: the Ile/Val outer contours are significantly less permissive than the old

general case, and the cis Pro contours are shifted “up and to the left” and severed

into two patches with a disallowed ψ region in between (Figures 5.5 and 5.6).

There is new detail and strengthened evidence for clusters of allowed but disfa-

vored conformations. The two allowed regions in the lower right quadrant on the

general-case plot are now clearly visible data point clusters. The upper one consists

of γ-turn residues stabilized by a backbone H-bond, entirely disallowed by the older

ProCheck (Laskowski et al., 1993) criteria, previously argued as allowed by members

of our lab (Lovell et al., 2003), and now quite clearly populated in the high-quality

data. The lower peak is a conformation necessary to form Type II β turns. It is

most favorable for Gly (Figure 5.5); impossible for Pro, pre-Pro, Ile, and Val; and

allowed but disfavored for the general case, most frequently seen for Asp.

The final set of plots can be seen in Figure 5.7. The six new distributions and

scores are now implemented in both MolProbity and PHENIX, and will show up very

soon on the web and in nightly builds, providing the most up-to-date Ramachandran

analysis possible to crystallographers and spectroscopists.

111



Figure 5.5: Top500 vs. Top8000 Ramachandran plots for all six Top8000 categories.
More data from the Top8000 (small gray dots) and additional separate distributions
lead to a variety of changes in the Top8000 outer (i.e. “allowed”) contours (blue)
relative to corresponding Top500 contours (red). Top left: general case. Top right:
Ile/Val (vs. general case). Middle left: pre-Pro. Middle right: Gly. Bottom left: trans
Pro (vs. all Pro). Bottom right: cis Pro (vs. all Pro). Also shown are selected residues
which were previously outliers and now allowed (blue plusses) (Figures 5.8, 5.9, 5.10)
and which are now (or still) outliers (red crosses) (Figures 5.11, 5.12, 5.13).
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Figure 5.6: Ramachandran difference plot: Top8000 distribution with just cis Pro
minus Top500 distribution with all Pro. The new separate cis Pro distribution is
enhanced “up and to the left” (positive values, green) and depleted for significant
portions of the old distribution (negative values, red). Contour levels range from
0.0001 (darkest) to 0.1 (lightest), where 1.0 is the maximum (percentile) value of the
original distributions before subtraction.
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Figure 5.7: Final set of six Top8000 Ramachandran categories. “Favored” regions
are delineated by smoothed contours encompassing 98% of the data (light blue). “Al-
lowed” regions are delineated by smoothed contours encompassing 99.95% (general
case), 99.9% (Ile/Val, pre-Pro, Gly, and trans Pro), or 99.8% (cis Pro) of the data
(dark blue).
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Interesting near-outliers with genuine conformations

In addition to their utility for validation purposes, these distributions invite further

investigation because of their rich information content on protein backbone energet-

ics. Outlier and barely allowed residues are of particular interest. For many such

cases, unique but significantly stabilizing interactions presumably compensate for

whatever repulsive forces cause the local φ,ψ region to be weakly populated.

For example, 1ka1 Ser264 (Figure 5.8) has φ,ψ +85˝,+171˝, which was enough

to barely make it an outlier using the Top500 distributions. This conformation was

previously validated as strained but real on the merits of the residue’s low B-factors,

good electron density, lack of clashes, and four good H-bonds, including one to an

active-site phosphate (Lovell et al., 2003). Now, with over an order of magnitude

more data and stricter quality filtering, a “shoal” has extended into this region of

the Ramachandran plot, nearly connecting with the Lα region (Figure 5.5); with

this new distribution, 1ka1 Ser264 is (more correctly) reported as allowed, albeit not

favored.

Similarly, 1a88 Pro31 is a cis Pro with φ,ψ -106˝,+56˝, having a well-modeled

conformation corroborated by good electron density and flanking hydrogen bonds

(Figure 5.9). However, it is just outside the allowed region and is thus classified an

outlier by the Top500 Pro distribution, which indiscriminately lumps cis and trans

Pro together. With the new separate Top8000 cis Pro distribution, this strained but

genuine conformation is labeled allowed. Interestingly, this region is highly conserved,

and Pro31 in particular, by virtue of its proximity to the catalytic triad (Figure 5.9),

is implicated in the chloroperoxidase enzyme’s reaction mechanism (Hofmann et al.,

1998). In general, a higher frequency of strained but genuine conformations are

observed at active or functional sites, which emphasizes the importance of our more

finely tuned torsional distributions with better delineated margins.
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Figure 5.8: 1ka1 Ser264 with φ,ψ +85˝,+171˝ (Figure 5.5) was considered a Ra-
machandran outlier using the old Top500 distribution, but was manually validated
due to extenuating interactions. It is now considered allowed using the new Top8000
distribution, thereby confirming the previous manual analysis. Taken from (Lovell
et al., 2003).

Another such case is 1ftr Gly150 (Figure 5.10) with φ,ψ +159˝,-93˝, which was

previously labeled an outlier but is now classified as allowed based on altered contours

near φ 180˝ (Figure 5.5). This conformation is genuine because its slightly unusual

backbone torsions are compensated by its two mainchain-mainchain H-bonds and

two more flanking mainchain H-bonds to waters.
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Figure 5.9: 1a88 cis Pro31 (green) with φ,ψ -106˝,+56˝ (Figure 5.5) was a Ra-
machandran outlier based on the single Pro Top500 distribution, but is now consid-
ered allowed based on the separate cis Pro Top8000 distribution. Its clear electron
density contoured at 1.2 σ (gray mesh) and 3.0 σ (purple mesh) and flanking main-
chain H-bonds validate its conformation. Furthermore, this residue’s location at
the enzyme’s active site adjacent to a catalytic triad (pink), with a putative H-bond
thought to be important at a later step in the reaction mechanism illustrated (dotted
line), helps explain its unusual but genuine conformation.
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Figure 5.10: 1ftr Gly150 (green) with φ,ψ +159˝,-93˝ (Figure 5.5) was a Ramachan-
dran outlier based on the Gly Top500 distribution, but is now considered allowed
based on the Top8000 distribution. Clear electron density contoured at 1.2 σ (gray
mesh) and 3.0 σ (purple mesh) and flanking mainchain H-bonds to both mainchain
and ordered waters validate its conformation.
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Marginal outliers with fitting errors

The new Top8000 distributions aren’t universally more permissive, however: al-

though some residues were formerly outliers and are now allowed, even more were

formerly allowed and are now outliers.

An example of the latter is 1bu8 Val246 with φ,ψ -77˝,-85˝, just below the α-helix

region (Figure 5.11). It was previously barely allowed, partly because there was less

data to precisely define the outlier/allowed border, but more importantly because

Ile and Val were previously lumped into the general-case distribution. Now that

a separate distribution for these hydrophobic branched-β sidechains is feasible, we

can identify 1bu8 Val246 as an outlier rather than allowed (Figure 5.5). Indeed, all

orthogonal information, from fit to density to various MolProbity markups, confirms

this assertion (Figure 5.11).
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Figure 5.11: 1bu8 Val246 (red) with φ,ψ just below the α-helix region (Figure 5.5)
was allowed based on the general-case Top500 Ramachandran distribution, but is now
considered an outlier based on the separate Ile/Val Top8000 distribution. Numerous
quality criteria corroborate the new assignment by confirming this residue is badly
misfit: massive steric clashes (pink spikes), three consecutive Ramachandran outliers
based on the new distributions (green lines), a rotamer outlier at the preceding
residue (orange), bad Cβ deviations (pink balls), poor fit to the 2Fo-Fc electron
density contoured at 1.2 σ (gray mesh) and 3.0 σ (purple mesh), and significant
peaks in the Fo-Fc electron density contoured at +4.0 σ (blue mesh) and -4.0 σ
(orange mesh).
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Prominent outliers with fitting errors or non-standard chemistry

Other outliers are so blatant that the particular choice of allowed vs. favored contours

is essentially irrelevant. One such case is 1j58 Gly308 (Figure 5.12) in the absolutely

forbidden region near φ = 0˝ (φ,ψ -21˝,-95˝). It lies amidst a hideously modeled

region with steric clashes and a Cβ deviation (despite low B-factors). The electron

density further contradicts the model, suggesting large (approximately 120˝) peptide

rotations to move the carbonyl O into density. Thus the clashes and distorted ge-

ometry are not compensated by some other force; the residue is simply misfit in the

crystal structure.

Another is 1y2m Ser212, with φ,ψ near 0˝,0˝. This residue actually has a covalent

modification that is unflagged in the PDB file (Figure 5.13). This rare feature alters

the local chemistry, resulting in deviant geometry (from the perspective of a normal

polypeptide) as detected by several MolProbity measures. However, the model fits

the experimental electron density well, and is almost certainly valid (Figure 5.13).

It is therefore not particularly useful for learning the subtle tradeoffs involved in

protein backbone energetics.
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Figure 5.12: 1j58 Gly308 with φ,ψ -21˝,-95˝ (Figure 5.5) is part of a series of
Top8000 Ramachandran outliers (green lines). All orthogonal information – steric
clashes (pink spikes) and poor fit to the 1.2 σ electron density (gray mesh) – cor-
roborates its status as an error rather than a rare but genuine conformation. Stereo
image.
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Figure 5.13: 1y2m Ser212 with φ,ψ near 0˝,0˝ (Figure 5.5) is a Top8000 Ramachan-
dran outlier (green lines). A widened bond angle (red fan) and a Cβ deviation (pink
ball) flag it as suspicious. However, the 1.2 σ electron density (gray mesh) shows
that the modeled conformation fits the experimental data quite well. In fact, this
residue is so unusual not because it is fit erroneously, but because it has a cova-
lent modification that forms a local ring-like structure (dotted line), which is why it
deviates from normal protein geometry.
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5.4 Future: Updating sidechain torsional distributions

The Top8000 has already enhanced our ability to discriminate realistic from dubious

backbone conformations by using updated torsional distributions. In the near future,

we wish to expand that analysis to sidechains.

The Richardson lab has a history of carefully describing sidechain conformational

preferences. Perhaps the biggest landmark was the “penultimate” rotamer library,

which reported preferred values for each discrete rotameric well and promulgated

the practice of filtering out residues with high B-factors (Lovell et al., 2000). A few

years later, a similar procedure to that described above for making Ramachandran

distributions was used to craft smooth, multidimensional χ-dihedral-angle distribu-

tions (Lovell et al., 2003) for use in MolProbity.

Yet these studies were conducted with small data sets consisting of 240 and

500 structures, respectively. In contrast to backbone, sidechains have significantly

different chemistry for essentially every amino acid type, so one must invoke more

subsets – roughly 20 instead of just 6 (Section 5.3) – to achieve accurate sidechain

torsional validation. The greater than order of magnitude gain in data quantity

afforded by the Top8000, then, will likely be instrumental for improving our ability

to discriminate favored or allowed conformations from outliers.

We have several interesting rotamer analyses planned using the Top8000. For

example, we may filter out residues with poor real-space correlation to local electron

density (Shapovalov and Dunbrack Jr, 2007). Using the resulting updated distribu-

tions, we plan to identify new “decoy” rotamers (Lovell et al., 2000). One productive

tactic may be to find rotamer pairs that mimic the reversed Leu decoy phenomenon

(Lovell et al., 2000) in that much of the sidechain overlaps closely but one atom

(or rigid group of atoms) protrudes, thereby identifying decoy rotamers plus their

putative correct companions. We will also investigate whether certain covalent bond
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angles (e.g. Cα-Cβ-Xγ) differ significantly from expectation for specific rotamers

(probably involving ` χ1); even small such changes are amplified to non-negligible

displacements of the sidechain end via the lever effect. As a related way to ex-

plore a sidechain end’s placement possibilities, we will develop methods for sampling

sidechain conformers, including not only the modal rotamers but also nearby sub-

rotamers, that are well dispersed in Cartesian rather than simply torsional space.

Finally, in addition to the usual amino acid sidechains, the Top8000 may finally

enable us to create a multi-dimensional dihedral distribution and rotamer library for

disulfides. The 5 degrees of freedom and the rarity of disulfides in proteins (relative to

most amino acids) has so far prevented bioinformaticians from addressing this need.

In particular, the versions of the Top8000 with different degrees of homology filtering

(50%, 70%, 90%, 95%) will allow us to create different distributions for different

needs: one of the more loosely homology-filtered versions can be used for disulfide

validation, where certain rotamers are truly overrepresented due to functional utility

in certain types of folds, whereas one of the more strictly homology-filtered versions

(along with imposed symmetry across the two ends) can be used for disulfide design,

where structural possibility is more important than structural history.

Our work on sidechain torsions is in a preliminary stage, but by using the Top8000

and the cadre of strategies proposed above, we expect to achieve noticeable improve-

ments in sidechain treatment in MolProbity and PHENIX in the near future.
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5.5 Discussion

Strongly favored regions are labeled as such in our distributions because they are

quite common across thousands of structures, presumably because they play archi-

tectural roles that ensure the protein remains stably folded. Rare but allowed con-

formations are therefore potentially more interesting, because they are more likely

to play specific “functional” roles – indeed, they appear to be overrepresented at re-

gions such as enzyme active sites (Lovell et al., 2003), the loci of unusual chemistry

critical for biology. It is therefore important to differentiate such rare but allowed

conformations from erroneous conformations that fall into (or near) outlier regions

because they are modeled incorrectly.

To this end, I have created new Ramachandran distributions which are more

in line with orthogonal all-atom quality criteria, as illustrated by several outlier

discrimination examples. This convergence of orthogonal sources of information pre-

sumably means the new distributions are better reflective of the underlying real-

ities of backbone-centric protein energetics. Larger amounts of more stringently

filtered data have been instrumental here, as evidenced by differences in “decoy”

discernment by distributions based on the older Top500 vs. the newer Top8000,

thereby demonstrating the power of structural bioinformatics for improving our un-

derstanding of the fundamental determinants of protein structure. To encourage

their widespread adoption, these new distributions are already implemented in Mol-

Probity and PHENIX (Adams et al., 2010), and they have been recommended by

the wwPDB VTF for official incorporation in the PDB.
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6

CASP8 Assessment

6.1 CASP: the “Olympics” of structure prediction

The Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a

biennial protein folding competition – the “Olympics” of structure prediction, as it

were. Anyone in the world is free to form a participant group, receive sequences of

proteins with temporarily secret experimentally solved structures, and submit up to

five of their best structural models for each such target. CASP is made possible by

crystallographers and NMR spectroscopists who graciously delay publication of their

experimentally hard-earned structural information to serve the structure prediction

community. On the order of 100 targets are open for competition in a typical CASP

experiment. In particular, many target structures come from the high-throughput

Protein Structure Initiative (PSI), a federally funded mega-project with the goal of

“structural genomics”, i.e. elucidating the structures of as many diverse proteins as

possible.

A striking recent trend is that an increasing percentage of targets are significantly

homologous to proteins of publicly known structure, and correspondingly a decreas-

ing percentage are genuinely novel structures with previously unobserved folds. A
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primary reason for this shift is that much of the “low-hanging fruit” – unique se-

quences encoding experimentally well-behaved, small-to-midsize proteins with novel

folds – has already been harvested. PSI structures are now more finely mapping

the structural space of a limited sequence space, as opposed to boldly exploring new

regions of sequence space (and thus presumably also of structural space). To be sure,

the CASP organizers have recently launched a “CASP Roll” experiment, with tar-

gets presented to predictors as the structures are solved instead of in biennial lumps,

in order to provide more opportunities for prediction of new folds, but the usefulness

of this promising approach is not yet proven.

As a result, CASP has evolved in recent years to focus more on template-based

modeling (TBM), also known as homology modeling, as opposed to free modeling

(FM). In these methods, an existing structure of similar sequence is used as a “tem-

plate”, i.e. an initial guess for the structure of the target sequence, then a refinement

technique of some sort is used to predict deviations from the template based on dif-

ferences between the target and template sequences. The TBM community at large

employs a wide range of refinement techniques, with stochastic and deterministic

search/minimization techniques, and with scoring functions ranging from statisti-

cal functions based primarily on evolutionary information to largely physics-based

pseudo-energy functions. In spite of these differences in approach, one emerging

commonality is that essentially all groups now use multiple templates rather than

a single template – the “evolutionary” camp in particular have gotten very good at

recognizing distant relationships and putting together pieces from many templates,

while much physics-based prediction (e.g. Rosetta) uses many small fragments with

related sequences rather than a single explicit template.

In each CASP experiment, an overall assessor or judge evaluates the success

of each group, thereby providing perspective on which prediction techniques are

currently state-of-the-art. Historically, success of predicted models has been based on
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Figure 6.1: Cα atoms make up only about 10% of the atoms in proteins. For
CASP8 assessment, we focused on the other 90% (Keedy et al., 2009). Left: Cα-
only representation of T0472. Right: all-atom representation of T0472.

accuracy of Cα placement with respect to the crystal structure or properly trimmed

(i.e. ignoring poorly defined regions such as floppy loops and tails (Tress et al., 2009))

NMR model. However, as it is almost trivial to note, Cαs comprise only about 10%

of the atoms in a protein (Figure 6.1) – the other 90% are, for the most part, being

ignored. This tradition is unfortunate, because an end user of a homology model

requires a fully fleshed-out representation of a protein, not just a skeleton, in order

to e.g. design a drug that binds tightly in a specific orientation.

In 2008, the Richardson lab realized that our critical perspective on structure vali-

dation, embodied in MolProbity, could be applied to predicted models as well, so that

summer we served as TBM assessors for the 8th CASP experiment (CASP8) (Keedy

et al., 2009). I was immediately interested in branching out from validation of ex-

perimental structures to computational models, and became intimately involved in

the assessment process. As over 60,000 predicted models were gradually submitted,
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Figure 6.2: In attempting to sift through thousands upon thousands of predicted
models submitted to CASP8, such as more than 500 (brown) for target 409 domain 1
(black) shown on the right, I began to unconsciously draw parallels to other natural
phenomena, like the autumnal Great Smoky Mountains forest shown on the left.

it became quite a task to navigate the veritable forest of models (Figure 6.2) and

identify the best ones, so essentially all members of our lab contributed to the pro-

cess of assessing their correctness and all-atom quality. The primary goal was to

incorporate all-atom quality as a component of accuracy, somewhat of a departure

from previous assessments. Our lack of familiarity with the CASP status quo also

gave us leeway to reevaluate several other standard practices and thereby improve

assessment in fundamental ways. Finally, we packaged our model pre-processing and

assessment applications into a publicly available repository, for continuing use by

future predictors and (hopefully) assessors.
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6.2 All-atom scores for predicted models

The traditional Cα-only score in CASP is GDT (global distance test), computed

with the program LGA (local-global alignment) (Zemla, 2003). GDT is an excellent

indicator of one structure’s similarity to another, applicable across the entire range

of difficulty for TBM targets and, to a large extent, for free modeling (FM) as well.

Its power derives primarily from its use of multiple superpositions to assess both

high- and low-accuracy similarity, as opposed to more quotidian metrics such as

root-mean-square deviation (RMSD), which use a single superposition. Specifically,

a version of GDT using relatively loose interatomic distance cutoffs of 1, 2, 4, and

8 Å called GDT-TS (“total score”) has traditionally been the principal metric for

correctness of predictions. However, a variant using stricter cutoffs of 0.5, 1, 2,

and 4 Å called GDT-HA (“high accuracy”) was used for much of the CASP7 TBM

assessment because of its enhanced sensitivity to finer structural details (Kopp et al.,

2007; Read and Chavali, 2007). We believe that GDT-HA probes a level of structural

detail similar to that achieved by our new measures (see below), and we therefore

continue to use it widely here.

To supplement GDT, we devised six new all-atom scores. The first two provide

information on model-only quality, and thus uniquely can be computed by predic-

tors before model submission. The last four provide information on model-to-target

match, and thus can only be computed by the assessors (or for retrospective stud-

ies). Importantly, hydrogens were necessary for four of the six measures, and were

therefore added to all models and targets with Reduce (Word et al., 1999a) prior to

assessment.
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MolProbity score

The first score, MPscore, is the familiar MolProbity score (Davis et al., 2007; Chen

et al., 2009c; Keedy et al., 2009). It is based on a log-linear fit of three quality

parameters to resolution, such that a model’s MPscore is the resolution at which its

individual quality parameters would be the expected values:

MPscore “ 0.5` 0.42574 ˚ logp1` clashscoreq`

0.32996 ˚ logp1`maxp0, pctRotOut´ 1qq`

0.24979 ˚ logp1`maxp0, 100´ pctRamaFavored´ 2qq (6.1)

where clashscore is all-atom clashscore (Word et al., 1999a), pctRotaOut is the

percentage of residues that are rotamer outliers (Lovell et al., 2000), and 100 ´

pctRamaFavored is the percentage of residues that are Ramachandran outliers or

allowed, i.e. not favored (Lovell et al., 2003).

Mainchain reality score

The second score, MCRS (mainchain reality score), is similar in spirit to MPscore

but is skewed toward mainchain atoms:

MCRS “ 100´10˚avgSpike´5˚pctRamaOut´2.5˚pctLengthOut´2.5˚pctAngleOut

(6.2)

where avgSpike is the per-residue average of the sum of “spike” lengths from Probe

(indicating the severity of steric clashes) between pairs of mainchain atoms, pctRamaOut

is the percentage of residues that are Ramachandran outliers, and pctLengthOut and

pctAngleOut are the percentages of residues with mainchain bond lengths and bond

angles respectively that are outliers ą 4 σ from ideal. MCRS initiates a model’s

score at 100 then subtracts points for errors, meaning that extremely poor models

could end up with negative scores; we therefore placed a “floor” by truncating scores

at 0.
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Sidechain end positioning

The third score, GDC-sc (global distance calculation for sidechains), applies superposition-

based scoring to the functional ends of protein sidechains. Instead of comparing

residue positions on the basis of Cαs, GDC-sc uses a characteristic atom near the

end of each sidechain type (Keedy et al., 2009) for the evaluation of residue-residue

distance deviations. More concretely, the traditional GDT-TS score is a weighted

sum of the fractions of residues whose Cα atoms are superimposed within limits of

1, 2, 4, and 8 Å; using the LGA backbone superposition, the GDC-sc score is in-

stead a weighted sum of the fractions of residues whose corresponding model-target

sidechain atom pairs fit under 10 distance-limit values from 0.5 Å to 5 Å (8 Å would

be a displacement too large to be meaningful for a local sidechain difference).

Hydrogen bond correctness

The fourth and fifth scores, HBmc and HBsc, measure the percentage of target

H-bonds recapitulated by the model. These scores are similar to the H-bond cor-

rectness score used in CASP7 (Kopp et al., 2007), but separate mainchain H-bonds

(mainchain-mainchain only) from sidechain H-bonds (sidechain-sidechain or sidechain-

mainchain). H-bonds were defined by Probe (Word et al., 1999b) using default pa-

rameters, although we used a slightly more lenient probe radius for model (but not

target) sidechain H-bonds to reward correct atom pairings with imperfect geome-

try (Keedy et al., 2009).

Rotamer correctness

The sixth and final score, corRot, is analogous to HBmc and HBsc but applies to

sidechain rotamers instead: it measures the percentage of target rotamers recapit-

ulated by the model. Rotamers are assigned to high-probability bins in MolPro-

bity’s smoothed, multidimensional sidechain dihedral distributions (Lovell et al.,
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2003; Chen et al., 2009c). This means we required all dihedrals to fall into the

proper bins, rather than just one or a few (e.g. just χ1, or χ1 and χ2). Our method

is therefore a more stringent test of functional sidechain end placement, although

it makes prediction of long sidechains statistically/inherently more difficult than for

short sidechains.

NMR structures are typically ensembles containing many models with different

coordinates, so each residue in an NMR target does not have a single rotamer, as

is the case with X-ray targets. To address this hurdle, I worked with our lab’s

resident NMR expert, Jeremy Block, to define reasonable NMR target rotamers. We

decided to include only residues with “consensus” rotamers across the ensemble: 85,

70, 55, and 40% agreement for sidechains with one, two, three, and four χ angles,

respectively. These criteria led us to use on average 46% of target sidechains, with a

range from 25-65%.

We also considered requiring a minimum number of NOE distance restraints per

residue, under the assumption that the presence of experimental data would correlate

with more realistic sidechain conformations that could more reasonably be included

in the target set. The general trend among the NMR targets was found to be that

sidechains are more likely to converge to one rotamer given more restraints, but the

relationship is somewhat messy/complex (Figure 6.3). The lack of a tight linear

correlation may reflect the inequitable contributions of some NOEs to determining

the final set of conformations in the NMR model. Differences in methodology across

refinement programs can also influence the relationship between amount of experi-

mental restraint and degree of sidechain conformer convergence – e.g. some programs

may reach the same lowest-energy sidechain conformer in many independent trajec-

tories, ignoring evidence of other slightly higher-energy yet still (lowly) populated

states – but it is unlikely that effect played a role here because 15 of the 16 NMR

targets were contributed by the same experimental group, the Northeast Structural
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Genomics Consortium. Ultimately we elected to avoid becoming mired in these intri-

cacies, and instead candidly took the ensembles at face value by using simple rotamer

consensus to define NMR target rotamers.

I also compared prediction of full rotamers to prediction of just χ1 (Figure 6.4).

The correlation was tight, suggesting that χ1 is the most important dihedral for

anchoring a correct full-rotamer prediction, but the slope ą 1 and finite scatter

showed that some additional “assessable information” remains in the rest of the

sidechain. Given this result, we ignored χ1 prediction and focused on full-rotamer

prediction for official assessment.

Ian Davis originally created MPscore (before CASP8), Rob Gillespie created

MCRS and I subsequently polished it into its final form, Christopher Williams cre-

ated GDC-sc, Gary Kapral created HBmc and HBsc, and I created corRot.
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Figure 6.3: The number of NOEs per residue is roughly correlated with but fails
to neatly predict convergence to the consensus NMR rotamer. On the y-axis is
the percent of NMR-style “models” in the 16 CASP8 NMR targets that match the
consensus rotamer, as defined for the corRot score. On the x-axis is the mean
number of NOE restraints per residue for a given y-axis value. Data and linear fits
are shown for different sidechain types with 1, 2, 3, or 4 χ angles. (Note that different
numbers of residues contributed to different points on the plot because all residues
with the same number of χ angles and equal convergence were conglomerated.) In
all cases, although especially for longer sidechains, there is a general positive trend
but significant scatter.
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Figure 6.4: Prediction of just χ1 vs. full rotamers in CASP8. All models for X-ray
targets are shown in red. A linear fit is shown with a black line; it lies just above the
diagonal, shown with a gray line. Results were very similar for only those models
with GDT-TS ě 50 (not shown). Single-χ sidechains were not excluded from this
plot.
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To learn more about the information content of these scores, we plotted them

against the traditional Cα-based GDT scores on a per-model basis (Figure 6.5). As

a general rule all aspects improve together, but different detailed parameters couple

in different ways to get the backbone Cα atoms into roughly the right place, as

evidenced by the varying levels of saturation and scatter.

MolProbity score has high scatter and relatively low slope but is linear over the

entire range, and poor MCRS models exist at low GDT-HA but not at high GDT-

HA. These observations suggest that modeling physically realistic mainchain may

facilitate and perhaps even be essential for achieving really accurate predictions;

however, this relationship needs further study.

GDC-sc has the tightest correlation to GDT-HA, presumably because it measures

match of sidechain end positions between model and target, for which match of Cα

positions is a prerequisite. However, it shows the most pronounced upturn at high

GDT-HA, an effect detectable for most of the six plots; further investigation is needed

to decipher whether this observation reflects a threshold of backbone accuracy beyond

which it becomes much more feasible to achieve full-model accuracy.

The corRot score appears to capture different aspects of sidechain placement than

GDC-sc, and thus seems to successfully complement GDC-sc by providing a more

“local” perspective on sidechain accuracy.

The upper half of both H-bond measures shows the desirable behavior of a very

strong correlation and high slope relative to GDT, but with a large spread indicative

of a significant contribution from independent information.

Figure 6.6 shows a a pair of models for the same target with similar GDT-HA

scores but vastly different all-atom scores. Given the two models’ similarly correct

Cα placement, the model with excellent all-atom quality is irrefutably superior to

the one with unrealistic steric clashes and geometry outliers.
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Figure 6.5: Distributions of new full-model scores for individual models. For all
x-axes farther right is better, and for all y-axes higher is better. (a, b) All models,
regardless of GDT; (c-f) only the best models with GDT-HA. Dual linear fits are
on models with GDT-TS ă 55 vs. ě 55 in (a) and (b) and on models with GDT-
HA ă 60 vs. ě 60 in (e); these divisions were chosen manually to highlight visible
inflection points. Larger dots in (c-f) are median values for bins of 3 GDT-HA
units; bins at high GDT-HA include many fewer models, producing high variability
for some measures (e.g., corRot). The fit lines are well below the median points
in (e), because many points lie at zero MCRS. The y-axis for MPscore in (f) has
been reversed relative to other panels, because lower MPscores are better. Made
for (Keedy et al., 2009).
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Figure 6.6: Differentiating models with equally good GDT scores, based on full-
model performance for both physical realism and match to target. (a) Average full-
model Z-score, plotted against raw GDT-HA, on individual best models for target
T0494-D1 (PDB code: 2vx3, SGC, unpublished). (b) Model 407 3 (Lee) has a
GDT-HA of 65.9 and the best average full-model Z-score on this target. (c) Another
model with essentially the same GDT-HA (65.2) has a much lower full-model Z-score,
including poorer match to target sidechains and H-bonds; the six individual scores
are listed. Made for (Keedy et al., 2009).
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6.3 Using all atoms to rank predictor groups

Using these versatile new metrics, we wished to cast a wide net and find not just

predictor groups that excelled overall, but also those that excelled at particular

aspects of homology modeling. First, though, we needed to narrow our focus to

the subset of models with sufficiently accurate Cα placement for our “added value”

metrics to be meaningful.

To that end, we studied the distributions of GDT scores, and found them to be

strongly bimodal (Figure 6.7). This basic bimodal division also holds within most

individual target domains (though there is much variability between targets in the

positions and shapes of the peaks), implying that the TBM-wide bimodality is not

caused by bimodality of target difficulty. Accordingly, we only considered models in

the second GDT-HA peak (with GDT-HAě33), which have an approximately correct

fold and are therefore appropriate for the more detailed, local quality assessment

our new metrics provide. Consistency of “right fold” identification was assessed

separately (Section 6.4).

Along similar lines, we bucked the CASP trend of assessing the model designated

“model 1” by the predictors, and instead used only the best model (as judged by

GDT-TS) per target. Both this choice and the GDT-HA ě 33 filter served to winnow

the model pool to those most deserving of all-atom evaluation. Self-scoring of a

group’s model 1 as its actual best model was assessed separately – and found to be

disappointing (Section 6.4).
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Figure 6.7: Bimodal distributions of GDT-HA and GDT-TS scores. All CASP8
TBM models were placed into 33 equally spaced bins, separately for GDT-HA and
for GDT-TS. The division between “right fold” and “wrong fold” occurs at approx-
imately GDT-HA of 33 (which we used for our later analysis) and GDT-TS of 50.
Note that bimodal distributions were also observed within most individual targets
(data not shown). Made for (Keedy et al., 2009).
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At this point, all raw scores were converted to Z-scores, reflecting the number of

standard deviations from the mean for each target. Predictor groups could then

be ranked overall based on their performance relative to their peers, regardless

of target choice. The final group scores were made available on the CASP web-

site (http://www.predictioncenter.org/casp8/supp_ranking.cgi). Figure 6.8

shows the resulting “2-D ranking” plot, with average all-atom Z-score plotted against

average GDT-HA Z-score. David Baker’s group is the overall “winner”, to the extent

such a title is possible given the multifaceted nature of our assessment. However,

other groups excel at certain aspects but not necessarily others. For example, Lee

and Multicom earned recognition on the strength of both their sidechain modeling

and their Cα placement. On the other hand, Yasara won plaudits for excellent all-

atom quality, despite roughly average Cα placement (although they predicted mostly

easier targets).
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Figure 6.8: 2-D scoring of CASP8 predictor groups. (a) Group-average Z-score for
the 6 full-model scores, plotted vs. group-average Z-score for GDT-HA. (b) Close-up
of the upper-right quadrant from panel a, with the groups highlighted that did well
on the combined score from both axes (emphasized by the diagonal lines). Group
Z-scores are averaged over best models with GDT-HA ě 33; groups with a qualifying
model for ă 20 targets are excluded. Made for (Keedy et al., 2009).
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Although overall group rankings are certainly relevant for calibrating the pre-

diction community’s strengths and weaknesses, exemplary successes on particular

targets are also worthy of praise. For example, Figure 6.9 shows the model with

the single best individual Z-score for percent correct rotamers relative to the target

where that percentage is over 60%, thereby excluding models with exceptional ro-

tamer predictions on difficult targets where the average percent correct is actually

rather low. Notice the outstanding sidechain predictions in this region of hydropho-

bic core, including Leu, Ile, and Val residues. Other models with high GDT but lower

rotamer correctness are shown for comparison. Note that this group (DBaker) did

not have the best overall rotamer correctness Z-score, but did have some outstanding

models like this one.

As another example, Figure 6.10 illustrates the most dramatic cumulative GDT-

TS plot, for T0460, with two individual models very much better than all others:

489 3 (DBaker; green backbone in Figure 6.10(a)) and 387 1 (Jones-UCL). The tar-

get is an NMR ensemble (2k4n), shown (black in Figure 6.10(a)) trimmed of the

disordered section of a long β-hairpin loop. This is a TBM/FM target, because

although there are quite a few reasonably close templates, they each differ substan-

tially from the target for one or more of the secondary-structure elements. Only the

two best models achieved a fairly close match throughout the target (GDT-TS of

63 and 54, vs. the next group at 40-44); each presumably either made an especially

insightful combination among the templates or else did successful free modeling of

parts not included in one or more of the better templates.
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Figure 6.9: Individual model with outstanding rotamer correctness. Shown are
Cα traces and selected core sidechains for target 492 (blue) and several models with
good Cα placement (orange). Among them is model 489 1, which has the single
best individual Z-score for percent correct rotamers relative to the target where that
percentage is over 60% (green). Note the excellent match to the illustrated core
sidechains, especially relative the competing models.
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Figure 6.10: Two outstanding predictions for the TBM/FM target T0460-D1.
(a) Cα traces are shown for the target in black, for the 134/521 best predicted
models in terms of Cα placement in peach, and for the particularly exceptional model
489 3 (DBaker) in green. PDB code: 2k4n (NESG, unpublished). (b) Cumulative
superposition correctness plot from the Prediction Center website. The percentage of
model Cα atoms positioned within a distance cutoff of the corresponding target Cα
atom after optimal Cα superposition is shown (x-axis) for a range of such distance
cutoffs (y-axis); all models for T0460-D1 are shown in peach. Thus lines lower and
further to the right indicate predictions that better coincide with the target. The
rightmost lines are models 489 3 (DBaker, green) and 387 1 (Jones-UCL, blue).
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6.4 Correct fold identification, self-scoring, and other analyses

In addition to the all-atom scoring of individual models and of predictors across

targets, I contributed to several other analyses that broke the mold for CASP as-

sessment.

6.4.1 Consistency of “right fold” identification

As described above (Section 6.3), we only tallied the “added-value” all-atom scores

for models with reasonably accurate Cα superposition, i.e. those with the “right

fold”. However, we also sought to assess which groups excelled at consistently iden-

tifying the right fold in the first place, to help delineate the state of the art for that

stage of homology modeling.

I initially explored the idea of using good Cα superposition on a set of so-called

“core” residues as a measure of having correctly identified the basic protein fold. In

this paradigm, the models that “saturate” in terms of core Cα-based superposition

(regardless of the results of superposition using all Cαs) are the ones that got the

fold correct, presumably by identifying a good template. I attempted to define

such cores based on multiple sequence alignments to reveal evolutionarily conserved

residues, which one might presume would be more structurally conserved as well,

but my analysis showed that some conserved sequence positions are actually on

significantly mobile loops. Jane Richardson and I also tried defining cores based

on structural variability in the templates, both purely computationally and based

on visual inspection. Unfortunately, we found this approach produced artificially

large core definitions for small proteins and artificially small core definitions for

large proteins, apparently because good template structures for small proteins are

statistically more common.

Given these difficulties, we turned to the striking bimodal GDT distributions
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(Figure 6.7), and simply defined models with GDT-HA ě 33 as having the right

fold. Right fold percentage is also dependent on average difficulty of attempted

targets, so Figure 6.11 plots it as a function of average target difficulty. Groups

along the linear “outstanding edge” at the top of Figure 6.11 can be considered

exemplary given their target choice. For example, Yasara (lauded above for excellent

all-atom quality) succeeded on this metric by focusing on easier targets (Figure 6.8,

top right), whereas Baker and IBT-LT were equally successful but on more difficult

targets (Figure 6.8, top left). The central set of groups attempting essentially all

targets can act as a suitable accompaniment to the full-model, high-accuracy score

shown in Figure 6.8.
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Figure 6.11: Percentage of models with roughly the “right fold”, plotted vs. diffi-
culty of targets attempted. The percentage of all of a group’s models with GDT-HA
ě 33 (“right fold”) is on the y-axis. The average across a group’s attempted targets
of all-model, all-group average GDT-TS (a measure of target difficulty) is on the
x-axis. All groups attempting at least 20 targets are included. Names of several
groups along the “outstanding edge” are labeled. Made for (Keedy et al., 2009).
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6.4.2 Self-scoring

CASP predictors are allowed to submit up to five models per target, labeled “model

1” through “model 5”, but traditionally only model 1 has been assessed. In CASP8

we decided to instead assess the best model, as mentioned above (Section 6.3), and

separately assess self-selection, i.e. the ability to recognize the actual best model as

model 1. That ability is very important to end users of predictions who want a single

definitive answer, especially from publicly available automated servers.

To address this issue, we assessed self-scoring relative to that expected from

random chance based on the number of models submitted for each target. Figure 6.12

plots this score against the range of GDT-TS across the up to five models for each

target, which serves as a measure of willingness to explore conformational space

and/or alternative prediction methods. Most groups are at least 3 σ better than

random at picking their best model as model 1, but few are right more than 50%

of the time. Strikingly, servers turn out overwhelmingly to dominate the top tier of

this metric, making up all of the eight top-scoring groups and all but one of the top

20.

Although successful prediction and successful self-scoring are both very important

to further development of the field, these observations suggest they currently remain

quite unrelated, and we believe that they should therefore be assessed and encouraged

separately.
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Figure 6.12: Ability of groups to self-select their best model as model 1. The differ-
ence from the percentage expected based on random chance (correcting for different
average numbers of models) is plotted vertically (in units of standard deviations);
range of scores within a group’s model sets is plotted horizontally. For the best
self-scorers, the group name and the percentage of “model 1s” that were actually
“best models” are shown. Diamonds indicate server groups, which dominate the top
self-scorers; pluses indicate human groups. Made for (Keedy et al., 2009).
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6.4.3 Model compaction or stretching

During our CASP8 assessment period, assessors of previous CASPs warned us that

some groups may have “over-trained” their methods to maximize their global GDT-

TS score at the expense of protein realism. Specifically, they suspected that a known

small subset of groups systematically scrunched up or stretched out regions of their

models. To test this idea, I worked with Jeffrey Headd to examine the average stan-

dard deviation for both bond lengths and bond angles for the six suspicious groups

suggested by previous assessors, relative to a control group with good geometry and

GDT scores. We found that none of the suspicious groups had systematically longer

bond lengths or wider bond angles by more than 0.5 σ, or systematically shorter

bond lengths or tighter bond angles by more than 1 σ (Figure 6.13). This repre-

sents less than a 1% compaction in the models, which seems unlikely to produce any

significant effect on overall GDT scores.

However, local compaction or stretching was much more common, especially in

regions requiring a sequence insertion relative to a template structure. For example,

the model in Figure 6.14 attempted to span what should be seven residues with

only six, resulting in a string of bond-length outliers at 10 σ or more. This strategy

places all Cαs within 4 Å of their target positions for this local window, but gets

the alternation of sidechain direction wrong for half the residues on average, and

therefore fails to produce a biophysically realistic model that would be useful for

downstream applications. Clearly, there is still significant room for improvement on

modeling insertions relative to templates. In the near future, local compaction or

stretching may prove useful for diagnosing regions of homology models for which the

insertion or deletion strategy should be reexamined.
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Figure 6.13: Lack of systematic model compaction or stretching for “suspicious”
CASP8 groups. The average standard deviation is less than one in all cases. Group G
is a control known to have good geometry and GDT scores. The groups are assigned
arbitrary labels here to protect their identities.
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Figure 6.14: An over-extended β strand, with main-chain bond-length outliers up
to 40 σ, marked as stretched-out red springs. T0487-D1, PDB code: 3dlb, argonaute
complex. Taken from (Keedy et al., 2009).
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6.5 Discussion

Some of our most striking early observations of CASP models were that (1) many

models had quite poor Cα placement, and (2) even models with good Cα placement

often had poor placement of all the other atoms. The overwhelming impression was

that assessment practices from prior experiments (CASP1 through CASP7) “selected

for” techniques that approximated the correct overall Cα trace, but failed to reward

techniques that produced genuinely realistic models in a real-world, all-atom sense

(with some exceptions (Kopp et al., 2007)). These practices may have been rea-

sonable at the time, given the novelty of quasi-successful computational structure

prediction, but they unwittingly reinforced the (subconscious?) paradigm that pre-

dicting peptide orientations and sidechain rotamers is a lost cause. To emphasize

this point, Figure 6.15 shows a comically unrealistic “structure” from CASP8 that

is clearly the result of simple neglect rather than some fundamental limit on predic-

tion ability; until now, this predictor had no official incentive to try to predict these

sidechains’ proper conformations.

Admittedly, we will never know whether more stringent assessment practices, if

they had been enforced in the past, would have helped advance the field in terms

of all-atom quality and correctness. However, our analysis for CASP8 TBM as-

sessment (Keedy et al., 2009) and our contributions to assessment of the “refine-

ment” category (MacCallum et al., 2009) mark a start toward such a grand ex-

periment. By packaging our all-atom-centric tools and format test-and-correction

utility into a suite called BACPAC (Beyond Alpha Carbons Prediction Assessment

for CASP), which is freely available through the official CASP website as well as our

lab website (http://kinemage.biochem.duke.edu/software/bacpac.php), we set

the stage for continuing study of the structure prediction community’s ability to

improve the realism of their template-based models. Indeed, many scores contained
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Figure 6.15: Modeled “atomic fusion” of Glu and His sidechains in CASP8 target
T0389 model 481 1. Steric clashes from Probe are not drawn here – because they
don’t have to be!

in BACPAC or similar in spirit were used in CASP9: the assessors for the “refine-

ment” category explicitly used GDC-sc and MPscore (MacCallum et al., 2011), and

the TBM assessors enforced “physical plausibility” by strongly penalizing models

they deemed “unrealistic” on account of too many steric clashes or stereochemical

errors (although they reverted many of our other changes...) (Mariani et al., 2011).

Furthermore, the Montelione lab are using scores from BACPAC for template-based

assessment in CASP10; the runs will be done for them by Andriy Kryshtafovych at

the CASP Prediction Center as part of their services to assessors.

More generally, continuing use of our tools for official CASP assessment has the

unique potential to provide insight into the fascinating question of interplay between

incentive and performance in organized scientific competitions. Such insight may
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also be extensible to other, more recently formed CASP-like tournaments, such as

CAPRI for prediction of protein-protein interfaces (Janin, 2002) and RNA-Puzzles

for prediction of RNA tertiary structure (Cruz et al., 2012).

Our assessment results and several recent studies raise the somewhat related and

equally interesting point that human intuition can play a useful role in protein struc-

ture modeling. In CASP8 TBM we observed that server groups dominate for easier

targets, but human groups comprise the top groups for average and more difficult

targets, which require larger excursions from the best templates. Furthermore, many

of the “outstanding” models in CASP8 TBM (see Section 6.3) were produced by hu-

man groups. The CASP9 TBM assessors also found that human groups performed

better than server groups, although the improvement was mild, perhaps because

many human groups actually relied heavily on meta-servers (Mariani et al., 2011).

Finally, non-expert players of the protein-folding video game Foldit have recently

helped successfully solve several difficult prediction and design problems (Cooper

et al., 2010; Khatib et al., 2011; Eiben et al., 2012).

By way of contrast, server groups outperformed human groups at self-scoring

in CASP8 TBM (Section 6.4), but this may be because server groups used sim-

pler prediction methods with correspondingly simpler interpretations of the results.

Furthermore, identifying the best model from a small pool of possibilities, while

desirable, is not as important a skill as producing at least one especially good model.

Thus it appears that automated computation of the form implemented in CASP

servers is sufficient for certain tasks such as precise energy comparisons or relatively

simple homology modeling problems, but human intervention is useful for making big

jumps. With human-directed changes, there is more risk of making a starting struc-

ture worse, but there is concomitantly more potential reward of finding a significantly

better structure. Clearly we will have to wait for the ideal scenario of completely

reliable automated prediction regardless of target difficulty, but in the meantime it
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appears that tightly coupled man-machine interfaces may have significant benefits

for protein modeling.

Overall, I found CASP assessment to be overwhelming and sometimes bewil-

dering, but ultimately rewarding. (I suspect many other contributing members of

the Richardson lab feel similarly – now that assessment is over, at least.) Most

importantly for my thesis work, CASP assessment provided another opportunity

for comparative validation of competing alternatives for which all-atom evaluation

proved critical. In this case, the vast data set of submitted models contains a very

large number of invalid alternatives; fortunately, our all-atom scoring criteria are

trained using quality-filtered experimental structures, and therefore have “an eye

for” realistic conformations, allowing us to recognize them amongst the decoys. My

hope is that this perspective will prove to be a welcome and influential contribution

to the homology modeling field.
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7

Validation of Rosetta

7.1 An introduction to Rosetta

In the past decade, the software package Rosetta (Rohl et al., 2004; Leaver-Fay et al.,

2011) has emerged as the state of the art for macromolecular structural modeling.

Originally intended for ab initio structure prediction (i.e. without starting from a

template structure), it had its first breakthrough success in CASP3, yielding models

within 4-6 Å Cα RMSD of the crystal structure (Simons et al., 1999). In the years

since, enhanced methodologies and increased computing power have increased that

accuracy to ă 1.5 Å Cα RMSD for relatively small proteins (Bradley et al., 2005).

Rosetta was also co-opted for protein design, resulting early on in the creation of the

first novel globular fold, Top7 (Kuhlman et al., 2003) – a landmark accomplishment.

Subsequent successes have included the de novo design of enzymes that accelerate

previously reactions previously uncatalyzed by any enzyme (Röthlisberger et al.,

2008; Jiang et al., 2008; Siegel et al., 2010), although they are still orders of magnitude

slower than many natural enzymes.

More recently, experimental data has been integrated with Rosetta in various
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ways to focus the conformational search process, resulting in many spectacular suc-

cesses. CS-Rosetta uses NMR chemical shifts to rapidly and accurately determine

the structures of small to medium proteins (Shen et al., 2008); it was also applied

to yield the structure of an “invisible” excited state of a T4 lysozyme mutant (Bou-

vignies et al., 2011). When sparse backbone chemical shifts, RDCs, and NOEs are

combined, accurate structures of even larger proteins can be obtained (Raman et al.,

2010). In addition to NMR, Rosetta has also been integrated with X-ray crystal-

lography: a hybrid method using electron density to guide energy minimization was

used to solve several challenging crystallographic data sets that had stymied ex-

pert crystallographers and existing molecular replacement techniques (DiMaio et al.,

2011).

Despite the glamour of these recent reports, their success is largely predicated on

the information content of the experimental data component. By contrast, “pure” ab

initio structure prediction and de novo design remain challenging goals: Rosetta still

reaches the native conformation only rarely in unbiased prediction simulations, and

most of its proposed designed sequences fail to fold and/or function as desired. This is

because experimental guidance can mask deficiencies in the stochastic conformational

search process and oversimplified energy function.

Yet Rosetta’s computational methodology has a relatively strong foundation: a

sampling approach called fragment insertion (Simons et al., 1997), in which candidate

conformations for a local region are derived from a set of conformations adopted by

similar sequences in observed structures (“fragments”). Fragment insertion aims

to mimic a presumed kinetic process in which a protein adopts its final structure

thusfold: local regions fluctuate in and out of possible conformations dictated by

local sequence, and the unanimous global conformation is dictated by the union

of compatible local conformations. To facilitate this approach, Rosetta employs a

physically motivated energy function augmented with empirically based terms, with
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which to evaluate and subsequently accept or reject the aforementioned alternative

local structures on the basis of their compatibility with each other. Notwithstanding

the relative effectiveness and intuitiveness of Rosetta’s fundamental computational

aspects, they need improvement before the more difficult tasks of ab initio prediction

and de novo design can be mastered.

This chapter details several collaborative studies with David Baker’s group, the

original authors and ongoing purveyors of Rosetta. I used our lab’s tools and exper-

tise in experimental structure validation to assess the validity of low-energy models

generated by Rosetta, and thereby more accurately define Rosetta’s current strengths

and (more importantly) weaknesses. The results taught us that some of Rosetta’s

“failures” are due to artifacts from protein crystallization, but many more can be

attributed to blind spots or neglected contributions in its energy function (especially

ordered waters) and to fundamentally problematic conflicts between globally oriented

statistical terms and locally oriented physico-chemical terms.

7.2 Mapping energy landscapes to find alternate states

Before our CASP8 assessment experience (Chapter 6) had had time to fade from

memory, David Baker and his postdoc Mike Tyka came to us with a fascinating data

set (Figure 7.1) (Tyka et al., 2010) just begging for the type of detailed examination

our lab is famous for. They had used native-enhanced sampling to generate detailed

maps of the energy landscapes of 111 protein domains. Hundreds of thousands

of independent Monte Carlo trajectories were carried out for each protein using the

Rosetta@home distributed computing project (http://boinc.bakerlab.org/rosetta/).

Each trajectory consists of an initial low-resolution search followed by detailed all-

atom refinement. To enhance sampling near the native structure, which is generally

sampled quite rarely, in a subset of the trajectories bias toward the native struc-

ture was included in the move set used in the initial search and in the selection of
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coarse-grained models for all-atom refinement; therefore we refer to this procedure as

energy landscape mapping rather than de novo structure prediction. Each trajectory

ends up in a local energy minimum, and the hundreds of thousands of local minima

together provide a detailed map of the energy landscape.

The most striking initial observation is that the native structure almost always

lies in a deep energy minimum: protein conformations with Cα RMSD of greater

than 4 Å to the deposited structure almost always have higher energies (see, for

example, Figure 7.1 inset). For 41% of the proteins examined the lowest-energy

model is within 1.2 Å Cα RMSD from the deposited structure, and for 72% it is

within 2.5 Å Cα RMSD. Of all the residues simulated, 50% show Cα-Cα deviations

of less than 0.3 Å, and 90% show deviations of less than 0.8 Å from the corresponding

native residue after global superposition of the lowest-energy model onto the target

structure.

However, while the computed global minimum is almost always close to the native

structure, it is rarely identical. My primary role in this collaboration was to investi-

gate these quite unanticipated differences, using a multi-pronged approach entailing

structure validation with MolProbity (Davis et al., 2007; Chen et al., 2009c), bioin-

formatics with homology tools from the PDB (Berman et al., 2000), reexamination of

experimental data with electron density maps from the EDS (Kleywegt et al., 2004),

and molecular visualization with KiNG (Chen et al., 2009b). All relevant data and

tabulated results were made available online at

http://kinemage.biochem.duke.edu/suppinfo/landscapes/.
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Figure 7.1: Computed energy landscapes. Each panel represents a different protein.
The y-axis is the Rosetta all-atom energy and the x-axis is the Cα RMSD from the
crystal structure; red dots are models relaxed from the crystal structure. The inset
shows the energy landscape for 1ten (a fibronectin type III domain) in more detail
and a superposition of the models within four energy units of the lowest-energy model
(indicated by the horizontal gray line in the plot) on the crystal structure (black).
Colors indicate amount of variation in the Rosetta ensemble (blue, low; red, high);
variation is concentrated toward the loops. The vertical gray bars indicate the 1 and
2 Å points. Note that the y-axis has been compressed at higher values to fit in the
high-energy states without losing detail at the lower (more interesting) energies. For
41% of the proteins examined, the lowest-energy structure is within 1.2 Å Cα RMSD
from the deposited crystal structure (as for 1ten), and for 70%, it is within 2.5 Å Cα
RMSD.
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Errors in native structures

One can imagine many causative factors for the deviations, but an enticing possibility

that immediately sprang to mind was that the crystal structures contained errors of

the sort MolProbity is designed to detect, and thus that the computed models may

be better representatives of the true energy minimum. This possibility was not

inconceivable given that Rosetta’s energy function (in conjunction with extensive

conformational sampling) was sufficient to identify globally quite accurate models

for most the 111 proteins examined, and that essentially every crystal and NMR

structure contains at least a few genuine errors (Davis et al., 2007) (with only a few

exceptions – see the “paragon” investigations in Chapter 4). Furthermore, I was in

the perfect position to test such a hypothesis, fresh off CASP assessment and with

world-renowned expertise in structure validation at my fingertips.

A few examples did provide support for this idea. For example, Thr77 and

Thr101 in 1bkr are in bad rotamers that are flipped 180˝ relative to their correct

counterparts (Headd et al., 2009), introducing several MolProbity errors. A manually

corrected and re-refined version of 1bkr repairs these defects; strikingly, Rosetta’s

low-energy models do the same without the aid of experimental electron density

(Figure 7.2). However, in this case the computational models and original deposited

crystal structure differ in terms of their sidechain rotamers rather than their Cα

placement, so the deviations do not appear in score vs. Cα RMSD plots like those in

Figure 7.1. Furthermore, only about 4% of the local deviations in this data set were

demonstrably related to errors in the experimental structure. This is likely due to

the fact that errors in experimental structures involving displacements of Cα atoms

that are large enough to noticeably affect global Cα RMSD seldom occur. Usually

the experimental data is sufficient to overwhelmingly pinpoint the proper mainchain

conformation, especially for crystal structures at moderate to high resolution. At
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Figure 7.2: Correction of local errors in a deposited crystal structure. (a) MolPro-
bity detects errors by several criteria for Thr77 and Thr101 in a crystal structure of
calponin homology domain (1bkr): rotamer outliers, Cβ deviations (pink balls), and
steric clashes (pink spikes) to surrounding water molecules (brown balls) and protein
atoms (to a Lys side chain of another molecule in the crystal in the case of Thr77).
Furthermore, the Cβ atoms for both Thr side chains fall nearer to negative 5 σ Fo-Fc
difference density peaks (orange mesh) than to positive peaks (green mesh), indicat-
ing a mismatch to the experimental data. (b) The majority of Rosetta’s low-energy
models (blue) flip both side chains by 180˝ (Headd et al., 2009) to eliminate clashes,
establish hydrogen bonds with surrounding atoms, and fortuitously better fit the dif-
ference density. A structure independently re-refined against the original diffraction
data by the Richardson lab (green) corroborates this flip. Note that Rosetta’s back-
bone is somewhat mobile, especially for Thr77, perhaps because stabilizing effects
from the explicit water molecules and the crystal contact are not modeled. Neverthe-
less, in this case at least, Rosetta’s energy function is sufficient to detect the proper
side-chain conformations.

low resolution, gross mainchain errors sometimes occur: for example, others in our

lab have identified erroneous sequence register shifts, some as long as 10 residues, in

the protein portions of a 3.011 Å structure of the E. coli 70S ribosome. However, the

worst resolution in the data set considered here was 2.9 Å, and 85% of targets had

resolution no worse than 2.0 Å. In general, the more common classes of errors – and

the ones we have more experience diagnosing (Davis et al., 2007; Chen et al., 2009c)

– are subtle local sidechain or mainchain errors, or gross sidechain errors such as
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entirely misfit rotamers, but not gross mainchain errors such as entirely misfit loops.

Errors in Rosetta models

Conversely, in many cases the experimental structure was correct and the Rosetta

models appeared to have some deficiency that explained the deviation. This sce-

nario was significantly more common, accounting for almost 20% of discrepancies. A

deviation could be relatively safely assigned to this category if the native structure

was error-free, no homolog (60-99% sequence identity) or “isolog” (100% sequence

identity) structures were available to corroborate the Rosetta models, and the re-

gion was free of extenuating multimer or lattice interactions (see below). However,

it was often more difficult to identify the precise deficiency in Rosetta leading to

the misprediction, since the low-energy computational models reflect a precise bal-

ance between numerous competing energetic terms – although later collaborative

work (Section 7.3) was more suggestive as to the particular energetic mis-weightings

leading to poor models. That said, one easily detectable deficiency was the neglect

of ordered water molecules in favor of a computationally less expensive – but cor-

respondingly less accurate – implicit solvation model. For example, a well-ordered

water in 1wd6 “peels apart” two β strands on one end of a sheet; by contrast, Rosetta

adheres to ideal sheet conformation through this region due to the absence of the

water (Figure 7.3).

Biological quaternary interactions

In many of the remaining cases, neither the experimental structure nor the Rosetta

models was “wrong”; rather, the crystal or NMR structure represented a true com-

plex, whereas the Rosetta models represented estimates of the isolated monomer

structure. Indeed, I discovered that over 31% of deviations could be attributed to

missing macromolecular binding partners or ligands.
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Figure 7.3: Example of an erroneous computed alternate conformation. For the
protein JW1657 from Escherichia coli (1wd6, brown), an explicit water molecule
(brown ball) peels apart the two strands of a parallel β sheet while maintaining ex-
cellent hydrogen bonds (green dots) to maintain the protein’s structural integrity.
Rosetta cannot consider the possibility of an explicit water molecule because it em-
ploys an implicit solvent model; therefore, the computed low-energy models revert
to overly idealized (and in this case incorrect) β structure. The low B-factor (13.8)
of the water suggests it is well ordered and precisely placed, and chain B of 1wd6 as
well as other homologs confirm its position.
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For many of those cases, it was impossible to ascertain the veracity of the Rosetta

models as estimates of the unbound state due to a lack of corroborating evidence.

For some other cases, however, experimental structures of the same protein in an

apo state were available. For instance, the Rosetta models computed for 1urn, the

RNA-binding domain of the U1A spliceosomal protein, in the absence of its RNA

binding partner fall into two low-energy clusters: one that matches the RNA-bound

conformation, and another that matches the unbound conformation as seen in the

apo crystal structure 1nu4 (Figure 7.4). These observations are consistent with a

significant importance for conformational selection in the RNA-binding mechanism.

Such successes increased our confidence that the computed monomers for homo-

oligomeric structures may correspond to the the real conformations adopted by these

proteins after synthesis but before oligomerization, and thereby fill a gap that is hard

to address experimentally.

Non-biological crystal contacts

After the above mentioned rationales had been fully explored, many significant devi-

ations between Rosetta models and experimental structures remained unexplained.

One major culprit we noticed was the presence of the crystal lattice in the experimen-

tal structures (only three targets were NMR structures) but not in the simulations.

For example, the N-terminus of thioredoxin forms mainchain-mainchain β-sheet

contacts with a neighboring unit cell in 1faa, but collapses toward the body of the

protein in isolated-monomer Rosetta simulations (Figure 7.5).

To confirm that crystal contacts indeed caused the deviations, rather than being

fortuitously co-localized with them, the Baker lab performed further computations in

which all-atom energy minimization was performed in simulated lattices generated

using crystallographic symmetry. Indeed, in many cases the calculations carried

out in the presence of crystal contacts converge on minima considerably closer to
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Figure 7.4: Influence of binding partner. The simulation of 1urn identifies two
pronounced minima in the main RNA binding loop 46-52. One (thin blue backbones)
matches the conformation found in 1urn (thick blue backbone) contacting the RNA,
while the other (thin red backbones) forms a short helix matching the unbound
conformation found in 1nu4 chain A (thick red backbone), a crystal structure of the
apo form of this protein. Rosetta ranks these two minima (in the absence of RNA)
equal in energy, suggesting that both the bound and apo conformations could be
sampled in solution. This is further supported by the fact that chain B in 1nu4 is in
a conformation close to that of 1urn.

the experimentally determined structures than did the original isolated monomer

calculations.

Concomitantly, I validated deviations at crystal contacts by manually comparing

the conformations in Rosetta’s models vs. those in structures of the same (or occa-

sionally a very similar) protein in a different crystal lattice. In many cases, such as

the one illustrated in Figure 7.6, the alternate structure lacking the crystal contact

agreed virtually perfectly with Rosetta’s models. Such correspondences lend cre-

dence to Rosetta’s ability to correctly model both solution states of proteins given

their (mostly (Davis et al., 2006; Fraser et al., 2011)) static crystal structures and,
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by extension, monomeric states prior to oligomerization (see previous section).

More broadly, these results hammer home the fact that crystal lattices impose

significant restrictions, and suggest that the precise conformations of surface loops

and even secondary structure elements may be artifacts of the experimental method.

Functionally, they support a plastic view of protein structure in which certain re-

gions are able to access a multitude of nearly isoenergetic minima and thus are very

sensitive to binding interactions.

Along similar lines, recent reports indicate that cryogenic practices in crystallog-

raphy not only reduce a protein’s inherent conformational dynamics but also reshape

the energy landscapes of its dynamically shifting sidechains (Fraser et al., 2011).

Those studies, in conjunction with our observations described here, motivate a re-

calibration of how we think of crystal structures. To be precise, a crystal structure

contains the subset of conformations that the crystal lattice selects out of the in-cell

or in-solution population distribution, subsequently modified by cryogenic freezing.
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Figure 7.5: Effect of crystal-packing interactions. In a crystal structure of a
monomeric spinach thioredoxin (1faa) (brown), the N-terminus engages in significant
β-sheet-like contacts to a crystal lattice neighbor (pink). In the isolated monomer
simulation, the “pull” from the crystal contact is absent, and Rosetta’s low-energy
models (gray) adopt a wide range of conformations that all collapse toward the body
of the protein.
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Figure 7.6: Effect of crystal-packing interactions. In a crystal structure of hu-
man immunophilin FKBP12 (1fkb) (brown), Asp32 contacts a lysine sidechain in a
crystal lattice neighbor (pink). In the isolated monomer simulation, this interaction
is absent, and Rosetta’s low-energy models (gray) “pull” the loop housing the Asp
inward. Other crystal structures of the same protein solved in different space groups
and lacking this crystal contact, 1d6o (green) and 1d7i (purple), match Rosetta’s
loop conformation.
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Overall, investigating the alternate states identified in this project provided an

interesting contrast to CASP8 assessment (Chapter 6). For CASP, the target crystal

structures could be taken as ground truth, since few predicted models were close

enough for us to consider the type of localized deviations at the heart of this project.

Here, by contrast, aggressive minimization seeded by native and homologous frag-

ments in a top-notch energy function produced a sufficiently detailed “energy land-

scape mapping” that native minima were often quite identified quite accurately.

Given this high level of success, we could turn our attention to the well-defined

but smaller discrepancies and actually consider the possibility that the computa-

tional models were in some respects “better” than the experimental structures. This

paradigm shift presented an intriguing twist on this thesis’s theme of validating al-

ternatives.

7.3 Understanding false Rosetta energy minima

Two more data sets provided a contrast to the plausible models discussed above by

focusing on Rosetta’s failures instead of its pleasantly surprising successes. The first

contained significantly deviant global folds; the second focused on mispredicted sin-

gle arginine sidechains. Rather than inducing despair, the natural “glass half empty”

perspective induced by these failures led me to usefully identify several notable de-

ficiencies in Rosetta’s energy function.

7.3.1 False global energy minima

The first data set, provided by Mike Tyka, contained 14 target structures and any-

where from 2 to 38 (typically 4 to 10) low-energy models per target. The models

spanned a wide range of similarity to the target, with Cα RMSD ranging from 0.8

Å (near-native) to ą 14 Å (false minima) (Figure 7.7), suggesting an undesirable

degeneracy in the energy function. In contrast to the data set from Section 7.2, most
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of the deviations between models and targets appeared to be unrelated to crystal

contacts, and instead likely reflected malfunctions in the underlying Rosetta energy

function.

To investigate the fundamental causes for these unwarranted deviations, I exam-

ined the faulty models at length using a cadre of assessment techniques. One feature

which immediately jumped to my attention was the high rotamer score or “rotameric-

ity” of the models relative to native protein structures (Figure 7.8). (The effect was

similar but less pronounced for Ramachandran score.) Notably, the computed mod-

els strongly preferred the absolute most probable rotamers. Native structures, by

contrast, permit rotamers of all percentiles equally – this is of course true by con-

struction, since our rotamericity score is the percent of sidechains whose χ angle

combinations fall into less populated regions.

Despite this glaring artificiality, rotamericity fails to correlate whatsoever with

distance from model Cα to target Cα after global superposition (Figure 7.9). Thus

the globally averaged local evidence does not suggest that overly rotameric sidechains

induce backbone inaccuracies. It is likely that many sidechain errors are simply

problems in and of themselves, independent of global Cα trace. However, it remains

possible that some individual mispredicted sidechains cause localized backbone er-

rors, or even that in some instances a few spatially adjacent mispredicted sidechains

conspire to push a global fold over the edge to a similar but non-native-like fold; this

topic deserves more concentrated study.

175



Figure 7.7: Rosetta models with false global energy minima. Rosetta score is
plotted against Cα RMSD for computed models for 14 targets. Note that many
models with very high RMSD values have similar energy as more native-like models.
These models are analogous to the bottoms of “funnels” in Figure 7.1, but here
they betray errors in the Rosetta energy function rather than potentially biologically
interesting alternate conformations.
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Figure 7.8: Rosetta models have excessively high “rotamericity” scores. His-
tograms for the 14 native structures in the data set (top) show that rotamericity is
symmetrically distributed, whether for single residues or averaged across five-residue
windows. For Rosetta decoy models (bottom), on the other hand, rotamericity is
shifted strongly to higher values, which correspond to more probable rotamers.
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Figure 7.9: Excessive “rotamericity” is globally uncorrelated with Cα inaccuracy.
Rotamericity averaged across five-residue windows fails to predict Cα-Cα model-
target distance.
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On a whim, I also examined the percentage of all-atom contacts (Word et al.,

1999b) in each of three categories: sidechain-sidechain, sidechain-mainchain, and

mainchain-mainchain. I suspected that the computed models had “un-protein-like”

relative amounts of these contact types. However, the global percentages in each

category were similar for native structures and Rosetta models (Figure 7.10).

In addition to Probe dot counts, I pursued a complementary approach that fo-

cused on the extent of “interdigitation” of sidechain contacts. First, for each residue I

defined a sidechain axis ~x from the Cα to the centroid of all sidechain atoms (includ-

ing hydrogens). Next, for each sidechain atom I defined a vector ~n to the nearest

neighbor atom that was both in a different residue and ď 4 Å away. I then very

simplistically calculated the angle θ between ~x and ~n for each sidechain atom. The

average θ for each residue indicates its degree of interdigitation with its surroundings,

where 90˝ is most interdigitated and 0˝ is least interdigitated. I excluded “surface

residues”, defined in a kludgy fashion based on combinations of several factors: ab-

sence of near neighbors, contact with one or more waters, distance from protein

centroid, and relative orientation of sidechain axis and vector from Cα to protein

centroid. This approach fails to account for sequence differences, since proteins with

longer sidechains have statistically more possibilities for orthogonal contacts as op-

posed to end-on contacts, but comparison of interdigitation for computed models

vs. experimental structures of the same protein should be valid. With this data set,

however, I found that for each protein the average θ for the decoy models was very

similar to the average θ for the native structures, with all differences ă 5˝.
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Figure 7.10: Decoys and natives have similar all-atom packing. The percentage
of Probe dots that fall into each of the three major categories above are similar for
decoy models and native structures.
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7.3.2 Failed arginine rotamer predictions

The second data set, provided by Chris King, exhibited Rosetta failures that were

inherently local in nature. For each individual example in a large set of arginines

at protein-DNA interfaces, Chris substituted each rotamer in Rosetta’s library and

energy-minimized its χ angles in the context of the fixed protein and DNA surround-

ings. He provided us with a list of 13 examples for which the lowest-energy conformer

derived from this procedure, the “repacked” conformation, did not coincide with the

native rotamer well. As a point of comparison, for each case he also supplied co-

ordinates for the “minimized” conformation, resulting from energy minimization of

the χ angles of the native rotamer (i.e. without explicit rotamer sampling to escape

the native rotamer well). My motivation for examining these cases was to determine

whether some aspect of the Rosetta energy function caused the error, or whether

instead the native sidechain had the wrong conformation in the crystal structure or

actually had multiple conformations.

Electron density was available from the EDS for only 6 of these 13 examples. In

5 of those 6 examples Rosetta’s neglect of ordered waters appeared to be at fault,

and in 4 of the 6 its drive toward higher rotamericity at the expense of H-bonds also

contributed to the error. Thus in almost all cases Rosetta prefers a statistically more

common rotamer at the expense of H-bonds to ordered waters and even polar groups

on DNA bases. A representative example can be seen in Figure 7.11.

In the remaining case, 1bl0 Arg46, a steric clash to the DNA indicates that the

native rotamer is indeed misfit in the crystal structure (Figure 7.12). The weak

electron density suggests that multiple conformations may be possible in this region,

though the deposited structure is not one of them. Rosetta’s minimized version of

the native rotamer cleans up this clash by slightly tweaking its χ angles and fits the

density as well as anything could in this region; it is a rather reasonable conformer.
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Figure 7.11: Rotamer prediction failure at an arginine-DNA interface. The native
Arg42 in 1zs4 (orange) forms multiple H-bonds (light green dots and lines) to the
adjacent DNA (pink) and well-ordered waters (peach balls). This deposited confor-
mation is well supported by the 1.2 σ (gray mesh) and 3.0 σ (purple mesh) electron
density. The “repacked” Rosetta rotamer (blue), predicted in the absence of the
waters but in the presence of the DNA, instead chooses a more common rotamer
(82.1% instead of 45.2%) that eschews the native H-bonds, allowing only one weak
H-bond (light yellow dots and line) to a different DNA base.

Rosetta’s repacked conformer, on the other hand, reaches up to the next DNA base

and forms nice H-bonds while remaining clash-free, but fits the density perhaps less

well. Interestingly, in this case the repacked conformer has a lower rotamericity

than the native sidechain, 18.2% instead of 39.4%. Ultimately, it seems possible

that both the minimized and repacked conformations coexist in solution, but there

is insufficient evidence to be sure. If anything, the results from the other cases cast

doubt on the repacked conformation.
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Figure 7.12: Possible rotamer prediction success at arginine-DNA interface. Top:
The deposited Arg46 in 1bl0 (orange) forms an H-bond (green dots) to an adjacent
DNA base (pink), but also clashes (pink spikes) to a second base. The 1.2 σ (gray
mesh) and 3.0 σ (purple mesh) electron density supports the DNA and protein
backbone conformations well, but is weak for the Arg sidechain. Middle: The Rosetta
minimized sidechain (blue) preserves the original H-bond, forms a new small H-bond
to the second base, eliminates the clash, and fits the density approximately equally
well. Bottom: The Rosetta repacked sidechain (blue) forms two H-bonds to the
second DNA base, but is slightly less well supported by the density.
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Figure 7.13: Relationship between Rosetta and MolProbity rotamer terms for
arginine predictions at DNA interfaces. The energy-like Rosetta term is related
to the probability-like MolProbity rotamer term by roughly a negative logarithmic
transformation. Examples from the native, minimized, and repacked subsets all
follow the same trend.

The root causes of misprediction appeared to be similar in the cases for which

electron density was not available, but it was difficult to be sure given the lack of

direct experimental corroboration of the native structure.

Conclusions: False Rosetta minima

I spent a not insignificant amount of time investigating these two sets of disappointing

models, one with wrong global folds and the other with wrong arginine rotamers,

and ultimately decided that Rosetta does two things noticeably wrong.
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First, it over-values “rotamericity” (i.e. rotamer probability) relative to forming

good hydrogen bonds. (The energy-like Rosetta rotamer term, called the Dunbrack or

fa_dun term, is related logarithmically to the probability-like MolProbity rotameric-

ity term (Figure 7.13); the relationship is imperfect because the Rosetta term is based

on different χ angle distributions (Shapovalov and Dunbrack Jr, 2011) than we use in

MolProbity.) This phenomenon highlights a fundamental limitation of a hybrid en-

ergy function incorporating both physics terms based on local interactions (e.g. van

der Waals, H-bonds) and statistical/empirical terms based on global statistics (e.g.

rotamer and Ramachandran probabilities). The problem is that statistical terms

drive individual examples to adhere to the most common global features in spite

of local, context-specific effects. For example, in the rotamer predictions discussed

above, H-bonds were undervalued as individual sidechains gravitated to statistically

more populated regions of χ angle space.

One solution may be to impose a constraint favoring a protein-like distribution of

rotamers; a downside is that this approach would require “communication” between

non-interacting sidechains during the simulation, which defies real-world intuition

and could be computationally difficult. Another solution may be to down-weight

statistical terms when local physics terms are pertinent, e.g. when multiple potential

H-bond partners are present, rather than predetermining relative global weights for

the statistical vs. physics terms (as is typically done).

Of course, given that the interactions that dominate protein energetics (van der

Waals forces, hydrogen bonds, electrostatics) fall off relatively rapidly as a function

of interatomic distance, it would be desirable for statistical properties like rotamer

probabilities to simply “emerge” from simulations. However, statistical terms are

arguably necessary for capturing subtle energetic effects that would be difficult or

computationally expensive to model otherwise. Given this necessity, the question

remains how to best coordinate the information content from these disparate sources.
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Second, Rosetta mispredicts many local conformations because its implicit sol-

vent model cannot place well-ordered, structurally integral waters. This problem

can be more straightforwardly addressed – in principle, at least – by modeling wa-

ters explicitly instead of implicitly. Indeed, members of the Rosetta community have

defined “solvated rotamers” in an attempt to address this problem (Jiang et al.,

2005). Despite this study’s admirable pioneering spirit, its implementation of sol-

vated rotamers relied on defining large numbers of rotamer variants with different

waters “attached” to sidechain polar groups, which results in combinatorial difficul-

ties for most practical applications. A later study took an alternative approach by

explicitly coupling waters to chemical groups on a ligand of interest instead of to

sidechains in the main protein, and also incorporating a provably accurate algorith-

mic framework (Huggins and Tidor, 2011). However, this approach is specific to

modeling applications involving ligands, such as drug design. Ultimately, additional

work will be necessary to generically and accurately model water molecules near the

protein surface, where they transition from disordered bulk solvent to being integral

components of stable and unique protein structures.

186



7.4 Predicting linchpins: critical structural checkpoints for folding

In Section 7.2 above, aggressive conformational sampling seeded with native and

homologous fragments was necessary to identify the near-native region of confor-

mational space. In general, for a prospective structure prediction problem, massive

amounts of sampling may be needed to fortuitously stumble upon this low-energy

basin. However, as members of the Baker lab recently discovered (Kim et al., 2009),

certain specific “features” – individual torsion bins, secondary structure assignments,

or residue-residue β-strand pairings – are often bottlenecks to Rosetta structure pre-

diction: when just one of these features is constrained to its native value, the compu-

tational time needed to identify the native energy well is reduced by many orders of

magnitude. In many cases these features have slightly unusual or strained geometry

and localize to functional regions or regions experimentally known to form late in

folding; the authors therefore speculate that Rosetta simulations may capture some

aspects of real-life protein folding.

Unfortunately, it is infeasible to commonly sample unusual features throughout

a protein during prediction: because most regions adopt more probable local struc-

tures, so the overall process would be hampered. However, if it were possible to

identify regions that may house a linchpin features before or during a simulation, de

novo structure prediction could be vastly accelerated, marking a major step toward

robust prediction of protein structures directly from sequences. In our view, such an

ability can best be obtained from detailed visual analysis and local structure vali-

dation tools. To that end, for several examples from the paper (Kim et al., 2009),

I examined low-energy models with relatively low global RMSD to the native struc-

ture, but lacking linchpins – in other words, models that were close but “not quite

there”. My goal was to be able to identify specific problems in these regions, and by

extension to be able to suggest to Rosetta more precisely when and where unusual
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Figure 7.14: A truncated C-terminus leads to a false Rosetta folding bottleneck.
Asp53 (peach ball) in 1pgx (peach) forms a mainchain-mainchain H-bond via its
carbonyl to the amide of Met70. In the Rosetta models (white), on the other hand,
the Asp53 carbonyl not only lacks its H-bonding partner, but also is likely repelled
by the presence of a negatively charged truncated C-terminus in silico.

features should be given a fair shake.

In some cases I studied, the linchpin feature was rarely sampled for a trivial reason

that was not biologically interesting. For example, Rosetta seldom samples the β

φ,ψ bin for 1pgx Asp53, but that is simply because its H-bond partner, Met70, was

trimmed during the simulation (Figure 7.14). In fact, the carboxyl group simulated

at the in silico C-terminal residue, Glu69, likely repels the carbonyl of Asp53, causing

it to rotate away by about 90˝ by adopting different φ,ψ. It should be noted that

the decision to trim the tail was perfectly reasonable since it’s surely disordered in

solution, but one or two more residues should have been included to properly study

this case.
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In other cases, the region in question was modeled correctly, and the linchpin

feature turned out to be quite thought-provoking. For example, 1di2 Ala134 adopts

α φ,ψ to form a β bulge on a solvent-exposed edge strand; such irregularities are

part of nature’s way of avoiding aggregration via “negative design” (Richardson and

Richardson, 2002). In contrast, Rosetta’s models for 1di2 put the bulge at one end

of the edge strand, and maintain highly regular β structure throughout the middle

of the strand (Figure 7.15). A trained human eye would immediately judge the

resulting edge strand to be too exposed and susceptible to pairing with an unwanted

partner. One could imagine a heuristic that recognizes such features and attempts

to translate the bulge more toward the center of the edge strand – even with a low

success rate this could be useful. Of course, codifying “dangerous edge strand” is

difficult, but strands with low curvature around the axis perpendicular to the strand

(i.e. too straight) and/or low twist along the axis parallel to the strand (i.e. too

flat), and also having a “regular” H-bond pattern between the edge strand and its

partner, would often warrant concern.

Another interesting example was found in that most famous of computational

protein targets, ubiquitin. (This protein had two linchpins, but they were sufficiently

distal from one another that I treated them independently.) Rosetta models with the

native β φ,ψ feature from 1ubi for Arg54 (8/10) matched the native 51-54 loop, but

those with α φ,ψ (2/10) adopted a different loop conformation instead. Interestingly,

the sidechains of models with the linchpin followed the loop trace of models without

the linchpin and, to a lesser extent, vice versa (Figure 7.16). In other words, the two

clusters of models were related by a “sidechain-mainchain swap”.

Unfortunately, I was unable to find any distinguishing characteristics of the mod-

els without the linchpin that would flag them as needing some sort of change. Even

if it were possible to define some such set of criteria, models meeting them may not

always require sidechain-mainchain swaps specifically as opposed to some other type
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Figure 7.15: A β bulge as a Rosetta folding bottleneck. Ala134 (peach ball) in
1di2 (peach), in the middle of an edge β strand, adopts φ,ψ in the α region to form
a β bulge. This residue fails to adopt the necessary torsions in most Rosetta folding
simulations (white), instead maintaining regular β structure with regular β-sheet
H-bonding (green dots) along the entire strand. View is from perspective of solvent.

of structural operation – that relationship here may be merely a coincidence.

Nevertheless, the general idea of sidechain-mainchain swaps is certainly intrigu-

ing, and may merit future investigation. For example, a new method for discovering

diverse and potentially low-energy loops may be to search for φ,ψ changes that would

redirect a model’s backbone along a path already charted by its sidechain in the orig-

inal conformation. Note that similar phenomena occur in natural proteins: N-caps

(Section 2.3.1) and pseudo-turns (Section 3.1) use sidechains to replace backbone-

only interactions in a type of structural mimicry. Certain misfittings at chain ends

in crystal structures (e.g. Figure 3.3) are also reminiscent of this relationship among

models produced entirely computationally.

In summary, I have proposed targeting enhanced sampling of rare features to spe-

cific regions such as overly exposed edge strands and potential sidechain-mainchain

swap/branch points. It may be possible to test these ideas’ utility by blind trials of
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Figure 7.16: Sidechain-mainchain swap between Rosetta models with and without
linchpin features. The mainchain of a Rosetta model for ubiquitin (1ubi) without
the Arg54 β φ,ψ linchpin (pink) overlaps with the sidechain of a Rosetta model with
the linchpin (green), and to a lesser extent vice versa, after co-centering (Block et al.,
2009) (white arrow) on the Arg54 Cα.

discriminating regions that require linchpins vs. those that don’t in larger data sets

of Rosetta models. Ultimately, though, it may be necessary to implement them in

Rosetta and empirically measure the speed-up in identifying native-like conforma-

tions.
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7.5 Investigating the origins of strand-swaps in β-sheet designs

De novo design of protein folds – i.e. designing “from scratch” instead of modifying an

existing protein – has seen various high-profile successes over the past 25 years (Hecht

et al., 1990; Quinn et al., 1994; Harbury et al., 1998; Kuhlman et al., 2003). De novo

design is epistomologically valuable because we often learn best by doing – only when

we attempt to mimic nature by building new proteins are we brought face-to-face

with the most fundamental underlying design principles.

In a final collaboration with the Baker lab, I examined de novo designed Ross-

mann folds that successfully adopt the desired global fold except for an unexpected

central β strand swap, as seen in NMR structures of the designed sequences solved

by the Montelione lab (Figure 7.17). The Rossmann architecture builds “outward”

from the N-terminus, loops back in to the middle of the final protein, and proceeds

“outward” again in the opposite direction, all the while alternating strands and he-

lices. Thus the first strand of the N-terminal subdomain and the first strand of the

C-terminal subdomain represent the junction point of the two halves of the final

full sheet. Befuddlingly, these are the two strands that swap positions in 3 of the 4

designs (see Table 7.1).

This mysterious result indicated that we may be missing something fundamental

about this class of structures. With this motivation, I used a cadre of structure

validation and visualization tools and pursued several ideas in an attempt to identify

a (singular) root cause of these bafflingly consistent swaps.

Degeneracy in branched-Cβ sidechains in central sheet

The prevalence of branched-Cβ sidechains (especially valines) in the sheet (Fig-

ure 7.18) probably facilitates a strand swap, since different strand pairings produce

similar contacts. This sequence degeneracy lowers the activation barrier for a swap.
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Figure 7.17: Flummoxing strand swaps in de novo designed Rossmann folds. Top:
r2x3v1. Middle: r2x3v2. Bottom: r3x3. Left: The design models have classic
Rossmann folds with the first strand (blue) to the left (from this perspective) of the
third (fourth for r3x3) strand (green). Right: In model 1 of the NMR structures
of these designs, those two strands swap places, but the rest of the protein is very
close to its intended conformation. The r2x2 model (not shown) adopts the desired
unswapped conformation.
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Table 7.1: Descriptions of strand-swapping de novo Rossmann designs.

Design NMR PDB code Description Swap
r2x2 2kpo 4-strand design (no swap)
r2x3v1 2l69 first 5-strand design β1-β3 swap
r3x3v2 n/a second 5-strand design β1-β3 swap
r3x3 n/a 6-strand design β1-β4 swap

However, enhanced “swappability” doesn’t say why a swap does occur, only why it

can occur; an additional hypothesis was needed to explain why the swapped confor-

mation is actually strongly preferred.

Note that a strand swap in the 4-stranded fold (r2x2) would constitute a much

larger architectural change than in the 5-stranded (r2x3) or 6-stranded (r3x3) folds,

in the sense that not just some but all βαβ units would be disrupted. Edge strands

are clearly distinguished by their hydrophilicity; since there are only two interior,

hydrophobic strands in the r2x2 topology there is only one possible strand swap and

it would affect all core interactions. This may be why r2x2 avoids a swap, adopting

the desired conformation in the NMR structure.

Overly idealized rotamers

One readily apparent feature of the design models, especially for long sidechains,

is that they over-value common rotamers. For example, many lysines switch from

extended rotamers (with all or mostly trans χ dihedrals) pointing toward solvent

in the design models to less extended rotamers making intramolecular interactions

in the NMR structures (Figure 7.19). (The effect was less pronounced for other

sidechains like arginine that aren’t as “statistically simple” (Lovell et al., 2000);

lysine rotamers are perhaps most emblematic of the general problem of statistically

driven over-idealization in Rosetta.)

Apparently the energy function favors the rotamericity bonus of a “good” rotamer
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Figure 7.18: Over-representation of the branched-Cβ sidechains Val and Ile in the
first and third strands of the design model of r2x3v1. These two strands swap in the
NMR structure.

too much relative to charge-charge interactions or hydrogen bonds. Over-damping of

charge-charge interactions by implicit solvation may play a role. This phenomenon

has also been observed in past Rosetta models we have analyzed (see Section 7.3).

Although overly idealized lysine rotamers clearly occur quite often in these mod-

els, it is unclear by what general mechanism they could possibly be causing the

observed strand swaps. That said, two specific cases offer some possible mechanistic

insight involving unexpected attractive interactions (see Figures 7.20 and 7.21) – or,

more colloquially, “ionic bondin’ for your moronic ponderin’ ” (Deltron, 2000). How-

ever, these particular amino acids are not common to all the designs, so the effect

cannot be a general explanation for the swaps.
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Table 7.2: Overly idealized lysine rotamers in strand-swapping Rossmann designs.
* Lysine sidechains in an extended rotamer in the design, but in a non-extended
rotamer with one or more intramolecular H-bonds in the NMR structure.
** Lysine sidechains in a non-extended rotamer with one or more intramolecular
H-bonds in the design, but in an extended rotamer in the NMR structure.

Design Forced Outward * Forced Inward **
r2x3v1 46% (6/13) 0% (0/13)
r2x3v2 40% (8/20) 15% (3/20)
r3x3 17% (2/12) 8% (1/12)

Figure 7.19: Overly idealized lysines in a strand-swapping Rossmann design. The
design model for r2x3v1 (left) has 13 lysines, almost all of which adopt extended
rotamers and extend into (implicit) solvent. In model 1 of the NMR structure (right),
however, many of these lysines “tuck in” and form intramolecular H-bonds (green
pillows).
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Figure 7.20: An N-terminal lysine forms unexpected H-bonds at the strand-swap
locus. Lys2 (purple) in r2x3v2 is designed to extend toward solvent, but folds in
to make hydrogen bonds and ionic interactions in the NMR structure. At the same
time, strand 1 (blue) and strand 3 (green) swap positions. Notably, Lys2 can only
access the carbonyls in the C-terminal turn of helix 2 (top of images) for hydrogen
bonding when the α2-β2 loop moves due to the strand swap.

Figure 7.21: A C-terminal lysine forms an unexpected H-bond near the strand-
swap locus. Lys150 (purple) in r3x3 is designed to extend toward solvent, but folds
in to make a hydrogen bond with Gln2 (pink) in the NMR structure. For this to
occur, strand 1 (blue) and strand 4 (yellow) must swap positions; meanwhile the
flanking strands remain in place.
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Kinetic trap caused by unnatural secondary structure propensities

With other explanations, the swapped state must have a lower free energy of fold-

ing than the designed state for the swap to actually occur. However, the swapped

state could also be the dominant species if an unusual folding pathway funneled it

in that direction. Indeed, Rosetta ab initio structure predictions of the designed se-

quences, performed by collaborators in the Baker lab, provided evidence in favor of

this idea: the design model’s energy basin, obtained in simulations restrained only by

chemical shifts, was definitively lower in computed energy than the strand-swapped

structure’s energy basin, which required additional NOE restraints to robustly iden-

tify (Figure 7.22). Therefore, I investigated the possibility that a “kinetic trap”

mechanism could explain all three strand swaps.

First, I identified a diverse set of real Rossmann structures with Dali (Model,

1996) (using r2x3v1 and r3x3) and SCOP (Murzin et al., 1995) searches. I then com-

puted average sequence-based PSIPRED (McGuffin et al., 2000) secondary structure

prediction confidence levels (from 0 to 9) for each secondary structural element (SSE),

strand, or βαβ unit for the design models and natural structures. For the latter, only

the residues corresponding to actual secondary structure in the design model – based

on a structure-based sequence alignment – were used. If the prediction matched the

DSSP-determined (Kabsch and Sander, 1983) secondary structure designation, the

confidence level was used for the average. If it did not match, half that number was

used instead; this is because PSIPRED gives a confidence level for each residue only

for the top prediction (H for helix, E for extended, or C for coil), so if the predic-

tion is wrong, one must assume that its confidence for the true secondary structure

type is somewhere between 0 and its incorrect confidence level. To the extent that

secondary structure propensities correlate to rates of folding, these averages predict

(or serve as proxies for) the relative rates of folding of different protein regions.
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Figure 7.22: Rosetta simulations reveal an energy gap between the swapped and
unswapped states. For each designed sequence, the strand-swapped NMR structure
relaxed (i.e. energy-minimized) in the Rosetta energy function (magenta) had higher
energy than the design model relaxed in the Rosetta energy function (green). This
energy gap was confirmed by CS-Rosetta (Shen et al., 2008) ab initio structure
prediction simulations, which use chemical shift restraints to reduce the amount
of conformational sampling required. Simulations with only chemical shifts (red)
produced conformations very similar to the design model. To reach conformations
very similar to the NMR structure, it was necessary to supplement the chemical
shifts with additional NOE restraints (blue). Even then, the computed energy of
the swapped state was higher. Each panel plots Rosetta energy (y-axis) against Cα
RMSD to the stated design model (x-axis). Credit: Nobuyasu Koga (Baker lab).
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Figure 7.23: Average PSIPRED confidence level per structural unit in natural
vs. designed Rossmann folds. These propensities are grouped in three ways: by
SSE (secondary structural element) (top), by β strand (middle), and by βαβ unit
(bottom). The x-axis is in structural order (edge strand to edge strand) instead of
sequence order (N- to C-terminus) to better reflect the topology of the Rossmann
fold. The r2x3v1 design is used to represent the r2x3 topology. Dotted lines are
polynomial fits to the data. Despite some noise, and a possible dip in propensity
for natural proteins for r2x3 strand 5, the natural and designed proteins follow quite
similar patterns in all cases.
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Figure 7.24: Putative kinetic trap explanation for strand swaps. Top: If folding of
the β5 unit (right) is delayed, the β1 unit (left) is free to form “naturally”. Bottom:
If the β5 unit folds precociously, β1 may be presented prematurely. The two halves
may then be pulled together if α1 and α5 (blue and red helices at top of panel)
interact; this is at least plausible since helices tend to form faster than sheets.
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We initially noticed that for r2x3, the natural structures (but not the designs)

are predicted to delay folding of their last strand relative to the other SSEs in the

protein (see dip in blue line in top left panel of Figure 7.23). Thus, it seemed

possible that in real structures the C-terminal region could be unfolded early, so the

N-terminal region would be free to fold independently and correctly (Figure 7.24).

On the other hand, in the designs the final strand is predicted to fold just as fast

as any other strand. So the C-terminal region could fold precociously and provide a

docking interface for the nascent first strand, perhaps facilitated by nascent α1-α5

interactions (assuming that individual helices form relatively quickly), thus pulling

β1 into its swapped position next to β4 in the folded C-terminal half (Figure 7.24).

An argument against this hypothesis is that the swapped structures have higher

contact order (Plaxco et al., 1998) – i.e. average sequence separation between con-

tacting residues – than the designed models, so the folding of the swapped structures

should be slower in general. Also note that proteins are synthesized from the N-

terminus, so the folding of the N-terminal half tends to occur first; this may mean

that the natural proteins do not in fact need to delay folding of their C-terminal

halves since the N-terminal halves will fold first anyway. Furthermore, there is no

such drop in propensity for β5 in real r3x3 folds, so this explanation (if true at all!)

cannot be universal.

Finally, taking the PSIPRED data more generally (Figure 7.23), the trend for

SSEs and strands for both natural and artificial structures resembles an inverted

parabola: secondary structure propensities are low at the edges and high in the

middle. The βαβ trend is also similar for both natural and artificial structures,

though this time it is flatter. Of course, the design confidence levels are higher

on average, but this is not unexpected from a Rosetta methodology that attempts

to match observed distributions and thus may over-emphasize certain aspects (see

Sections 7.2 and 7.3), in this case secondary structure occurrence probability by
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residue type. Ultimately, given this context of similar overall propensity profiles,

it seems likely that the kinetic trap mechanism involving a fast-folding last strand

discussed above is based on an anomalous statistical fluctuation, and the designs

probably fold at a similar rate and with a similar series of collapse events as real

folds.

Note that fewer real r3x3 structures than real r2x3 structures were available

through Dali and SCOP searches. Apparently this is because there are actually many

r3x3 folds in the PDB, but they commonly have potentially functional extensions or

insertions in their intra-SSE loops, as opposed to the short, minimalistic, utilitarian

loops in the designs. Incorporating individual substructures from these structures,

e.g. individual βαβ units into the βαβ unit averages (bottom row of Figure 7.23),

could provide more data and perhaps reveal a new trend. However, (1) this seems

unlikely because the r2x3 data is more ample and nevertheless shows a relatively flat

line, and (2) it is possible that extended loops, perhaps even with extra full domains

attached, would affect the folding kinetics of the r3x3 units, in a way that would be

difficult to account for in my analysis here.

Neglected interactions involving C-terminal His tag and N-terminal Met

All the design models lack a C-terminal His tag (GSLEHHHHHH) that is present in

the NMR structures. Furthermore, r2x3v1 and r3x3 lack an N-terminal Met residue

that is present in the NMR structures. Interestingly, the N- and C-termini are close

in space for both the designed and strand-swapped folds, so these extensions have the

opportunity to interact with one another in vitro (Figure 7.25). If this interaction

is more favorable in the swapped state than in the designed state, the swapped fold

may actually be preferred overall.

Also, according to our collaborators in the Baker lab, preliminary results from

MD simulations using the NMR model of r2x3v1 imply that the His tag can insert
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Figure 7.25: C-terminal His tag may stabilize swapped strands. In the design
model for r2x3v2 (left), there are few interactions between the first strand in its
designed position (blue) and the last helix (red). In model 1 of the NMR struc-
ture (right), however, the presence of a C-terminal His tag extension (GSLEHHH-
HHH) adds more turns of helix and introduces additional sidechains (pink), including
Glu128, that interact (colored dots) with the first strand, but now in its swapped
position relative to the third strand (green).

itself into the hole between the second and third helices, which could potentially

stabilize the swapped state.

Members of the Baker and Montelione labs are purportedly testing this idea in

vitro by using (1) a different C-terminal tag that can be cleaved between protein

purification and structure determination and/or (2) an N-terminal tag that would

have at least different interactions.

Note that the r2x2 construct used for NMR also has a His tag, yet a strand

swap does not occur. However, we believe that a strand swap is fundamentally much

less likely for the 4-strand topology for the reason described above, so despite any

neglected His tag interactions, it is not surprising that the non-swapped fold is still

overwhelmingly preferred.
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Conclusions: Strand-swapped designs

After significant effort, I have failed to uncover a fundamental cause for these flum-

moxing swaps. The truth is probably less satisfying: a number of subtle but consis-

tent factors likely conspire to alter the topology. To the extent that one or more of the

above phenomena make significant contributions, the following suggested method-

ological improvements may prove useful for future designs.

First, it would be good to achieve a more protein-like rotamericity distribution

through whatever means are feasible – as mentioned above (Section 7.3), perhaps

by imposing statistical terms based on global observations only when more pressing

local interactions are absent. However, it should be noted that the high rotamericity

observed in Rosetta models illustrates an adherence to physically realistic geometry

that is a very positive trait in general!

Second, negative design could be used to avoid undesired states. For example,

alternate topologies, including various strand-swapped variants, could be explicitly

instantiated and designed against. One limitation of such explicit negative design is

that enumeration of all possible undesired states is often combinatorially infeasible;

instead, heuristic negative design techniques, which implicitly avoid large numbers of

undesirable states, may prove more useful (Fleishman and Baker, 2012). For example,

methylene-Cβ sidechains could be interspersed with branched-Cβ sidechains in the

core to simultaneously avoid many strand-swapped variants.
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7.6 Discussion

Throughout the various projects involving Rosetta laid forth here, my goal was to

investigate rare or unexpected conformations using all-atom validation and graphical

inspection.

With the energy landscape mapping project (Section 7.2), I determined that some

conformational alternatives likely reflected macromolecular reality in the cellular mi-

lieu in a way that traditional structural biology cannot, but that others were demon-

strably false. With the false minima projects (Section 7.3), I found many more false

conformational alternatives identified by Rosetta, and hypothesized energy function

deficiencies that may explain the failures. With the linchpins investigations (Sec-

tion 7.4), I interrogated models that failed to adopt specific desired conformations

that would seed subsequent collapse events along the folding pathway. Finally, with

the strand-swapping design project (Section 7.5), I investigated root causes for an

undesired conformational change – in some ways the inverse of the first two projects.

Thus, in various ways, all these examinations involved the interplay of a protein’s

conformational alternatives: conformations it assumes in silico and likely in vivo

but doesn’t in vitro, conformations it assumes in silico but doesn’t in vitro or likely

in vivo, conformations it should assume in silico but doesn’t, and conformations it

shouldn’t assume in silico but does in vitro.

The Zeitgeist surrounding Rosetta seems destined to intensify as its high-profile

successes continue to roll in – yet significant weaknesses remain. A recently published

study tells a cautionary tale: using more sophisticated sampling algorithms coupled

to highly parallel computer architectures, the authors (Tyka et al., 2012) found

lower energies for many of the same proteins from Section 7.2, but also flatter score-

vs.-RMSD energy landscapes. These results indicate that there is still room for

improvement in both sampling methodologies and scoring functions. Ultimately, the
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type of detailed visual and bioinformatic analysis I performed here will be increasingly

valuable as a reality check on Rosetta’s performance.
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8

Conclusions and Future Directions

Taken together, the work described in this thesis illustrates that we’re still in a

stage of learning from nature rather than modeling biological systems from first

principles. Throughout the various examples presented here of validating alternate

conformations – performing alternate confirmation, if you will – a unifying theme

was the Bayesian-like idea of “protein-likeness”. In essence, conformations unlike

those commonly observed in real proteins are treated skeptically, and only confirmed

as valid if there are significant extenuating factors (H-bonds, van der Waals packing,

etc.).

This paradigm will likely be perpetuated in the biological information age we

are entering because of continuing high-throughput structure determination, most

notably by the Protein Structure Initiative. This influx of new protein structures

will provide additional fodder with which to refine our empirically based concept

of protein-like features. Simply a greater quantity of structures won’t be enough,

however: better refinement techniques will be necessary to ensure all pertinent con-

formations are properly modeled (Chapter 4), and stringent structure validation tools

will be critical for ensuring only the highest-quality input data is used for crafting
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measures of protein-likeness (Chapter 5). This is where the PDB Validation Task

Force (VTF) comes into play: by standardizing metrics of structural quality and

making them publicly available alongside the atomic coordinates (and experimen-

tal data), the VTF will play an important role in streamlining the deployment of

large-scale structural information for more prospective uses in protein engineering

and drug design.

Despite substantial efforts at “structural genomics”, genome sequencing remains

vastly more efficient. There are consequently orders of magnitude more sequence

information than structural information, and current technological trends suggest

that gap will only widen in the years to come. Some progress can likely be made by

carefully mining this evolutionary “fossil record”; indeed, a new algorithm based on

sequence covariation alone recently succeeded in determining the global folds of sev-

eral membrane proteins (Hopf et al., 2012). Although direct structural information

on every protein of possible interest would of course be preferable, beggars can’t be

choosers – and genome sequencing has made a generous donation.

It should be remembered that protein structure modelers resort to such empirical

methods as opposed to well-established, higher-level theory such as quantum mechan-

ics only because computational power is limiting. In the longer term, the roadblocks

to continuation of Moore’s law of exponential growth in processing power may be

removed, and/or quantum computers may succeed in revolutionizing computational

capabilities. There may then be a shift away from indirect empirical approaches

and back in favor of approaches that search for the global free-energy minimum us-

ing more fundamental theories of physics and chemistry. Of course, vastly expanded

computational power could also/instead be applied to making sense of the even more

unmanageable amounts of structure and especially sequence data available at that

time.

Yet all of this pertains to the methods for evaluating protein conformations; my
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work more importantly highlights the relevance of conformational heterogeneity to

biology. My studies of alternate conformations that are detectable in crystallographic

electron density maps (Chapters 2, 3, and 4) emphasized the point that protein struc-

tures are not strictly unique, but rather exhibit minor excursions around the single

most populated conformation. In addition to harmonic vibrations or fluctuations of

individual bonds or angles within energy wells, it is important to note that many

discrete changes (primarily sidechain rotamer jumps) occur. These dynamics are

every bit as much a substrate for natural selection as is rigid structure, and thus

are likely to be coupled to function in many cases. NMR can be used to study the

kinetics of transitions between substates – which may be quite pertinent to function,

especially for catalytically coupled heterogeneity – but cannot provide direct struc-

tural information about the multiple conformations involved. The surprise to many

is that X-ray crystallography, a technique which admittedly is getting a bit long in

the tooth, can fill in this gap (provided the data has high enough resolution). In my

opinion, studying near-native ensembles in atomic detail will reveal an entire new

level on which evolution operates, and will ultimately be key to designing man-made

enzymes on par with their natural counterparts (pending improvements in many

other areas as well: solvation, polarizability, etc. (Baker, 2010)).

In light of the growing appreciation for the functional relevance of near-native

conformational heterogeneity, a related question is the role of conformational en-

tropy in dictating protein stability and binding. Indeed, a recent study of alternate

conformations “hidden” in electron density found that conformational heterogeneity

disappears upon ligand binding in at least some systems (Lang et al., 2010), which is

in line with other work suggesting that protein conformational entropy can contribute

significantly to binding free energy (Frederick et al., 2007). The K‹ ensemble-based

protein design algorithm has also had great success by computing ratios of bound

and unbound partition functions to capture entropic changes (Chen et al., 2009a;
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Frey et al., 2010).

The Rosetta scoring function (Chapter 7) gets a lot of entropic information “for

free” – in its implicit solvation, residue-pair, and rotamer probability terms, for ex-

ample – but that information is convolved with other statistical correlations, making

it difficult to isolate the effects of entropy. Because of such convolution, this function

has proved sufficient for predicting the structures of many natural proteins (Sec-

tion 7.2), which thanks to natural selection have large free energy gaps between the

native state and states that are structurally somewhat similar, but is less adept at

selecting sequences with similarly pronounced folding funnels for the purposes of

design (Fleishman and Baker, 2012).

Ultimately these types of statistical/physical hybrid functions may need to elimi-

nate implicit entropic contributions in order to enumerate low-energy conformations

that contribute entropically to near-native ensembles. To wit, some have attempted

to preserve the hybrid model by carefully subtracting the double-counted interactions

in various statistical terms while maintaining the corresponding physical terms (Song

et al., 2011). However, this approach is fraught with difficulties: manual intervention

is necessary to determine which statistical term is responsible for double-counting

which physical term. There are fewer answers for the perhaps more insidious problem

of each individual residue being held to the standard of a global distribution (Sec-

tion 7.5) that is based on an essentially comprehensive set of examples (Chapter 5).

Frankly, I see no easy solutions – but in many ways the benefits of modeling in-

numerable complex interactions implicitly and rapidly (albeit imperfectly) outweigh

the costs of somewhat obscuring the contributing physicochemical phenomena, and

thus for the time being Rosetta’s continuing success is ensured.

In the bigger picture, molecular biology is still mostly reductionist, but is un-

dergoing a philosophical transition from documentation to manipulation, from bird-

watching to tinkering. Proteins are an inspiring example: despite being made up of
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only 20 subunits, they are among the most complex objects in the universe, with

nearly infinite potential for chemical function that biological evolution has only be-

gun to explore. Today, the broadly defined field of synthetic biology is in the nascent

stages of harnessing natural mechanisms for molecular production and expanding

into engineering pseudo-biological systems. The first important steps are being taken

now, such as creating variants of existing proteins with altered enzymatic properties.

These initial strides put us on a trajectory toward a new world of novel chemical

systems. In some sense “artificial”, these molecules will owe a debt of inspiration to

“natural” proteins, but will have unique capabilities selected on the merit of their

benefit to our species. Perhaps, then, the term “protein-like” will one day be rendered

obsolete by our improved understanding of the chemical physics of molecules.
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Appendix A

Digital resources

This thesis is supplemented by a CD or DVD with “bonus material”, including my

Java code, PDB coordinate and kinemage graphics files for various studies, raw wet

lab data, miscellaneous useful scripts, ..., and a summary file explaining it all. If you

didn’t receive such a disk, feel free to pester me (daniel.keedy@duke.edu at the time

of this writing) or Dave and Jane Richardson (dcrjsr@kinemage.biochem.duke.edu).

If you’ve read this far, you’ve earned it!
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