
RESEARCH ARTICLE

Exposing Hidden Alternative Backbone
Conformations in X-ray Crystallography
Using qFit
Daniel A. Keedy1, James S. Fraser1, Henry van den Bedem2*

1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San
Francisco, California, United States of America, 2 Division of Biosciences, SLAC National Accelerator
Laboratory, Stanford University, California, United States of America

* vdbedem@slac.stanford.edu

Abstract
Proteins must move between different conformations of their native ensemble to perform

their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect

this heterogeneity as a spatial and temporal conformational average. Although movement

between natively populated alternative conformations can be critical for characterizing

molecular mechanisms, it is challenging to identify these conformations within electron den-

sity maps. Alternative side chain conformations are generally well separated into distinct

rotameric conformations, but alternative backbone conformations can overlap at several

atomic positions. Our model building program qFit uses mixed integer quadratic program-

ming (MIQP) to evaluate an extremely large number of combinations of sidechain conform-

ers and backbone fragments to locally explain the electron density. Here, we describe two

major modeling enhancements to qFit: peptide flips and alternative glycine conformations.

We find that peptide flips fall into four stereotypical clusters and are enriched in glycine resi-

dues at the n+1 position. The potential for insights uncovered by new peptide flips and gly-

cine conformations is exemplified by HIV protease, where different inhibitors are associated

with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint

a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that

result in dramatic local rearrangements. Our results furthermore demonstrate the power of

large-scale computational analysis to provide new insights into conformational heterogene-

ity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data

will connect dynamics to the structure-function relationship and help drive new design strat-

egies for inhibitors of biomedically important systems.

Author Summary

Describing the multiple conformations of proteins is important for understanding the
relationship between molecular flexibility and function. However, most methods for inter-
preting data from X-ray crystallography focus on building a single structure of the protein,
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which limits the potential for biological insights. Here we introduce an improved algorithm
for using crystallographic data to model these multiple conformations that addresses two
previously overlooked types of protein backbone flexibility: peptide flips and glycine move-
ments. The method successfully models known examples of these types of multiple confor-
mations, and also identifies new cases that were previously unrecognized but are well
supported by the experimental data. For example, we discover glycine-driven peptide flips
in the inhibitor-gating “flaps” of the drug target HIV protease that were not modeled in the
original structures. Automatically modeling “hidden”multiple conformations of proteins
using our algorithmmay help drive biomedically relevant insights in structural biology per-
taining to, e.g., drug discovery for HIV–1 protease and other therapeutic targets.

This is a PLOS Computational BiologyMethods paper

Introduction
Even well-folded globular proteins exhibit significant flexibility in their native state [1]. How-
ever, despite advances in nuclear magnetic resonance dynamics experiments and computa-
tional simulations, accurately characterizing the nature and extent of biomolecular flexibility
remains a formidable challenge [2]. While traditionally X-ray crystallography is associated
with characterizing the ground state of a biomolecule, the ensemble nature of diffraction exper-
iments means that precise details of alternative conformations can be accessed when the elec-
tron density maps are of sufficient quality and resolution [3]. These maps represent
spatiotemporal averaged electron density from conformational heterogeneity across the mil-
lions of unit cells within a crystal [4, 5].

Computational methods have made strides toward uncovering and modeling conforma-
tional heterogeneity in protein structures from crystallographic data [3]. However, there is cur-
rently no automated approach to recognize the features of extensive backbone flexibility in
electron density maps, model the constituent alternative conformations, and validate that the
incorporation of heterogeneity improves the model. B-factors theoretically model harmonic
displacements from the mean position of each atom, but in practice are often convolved with
occupancies of discrete alternative positions when multiple backbone conformations partially
overlap [5]. Statistical analyses of electron density using Ringer has revealed evidence for a sur-
prising number of “hidden” alternative conformations in electron density maps [6, 7]. The phe-
nix.ensemble_refinement method [8] uses electron density to bias molecular dynamics
simulations, then assembles snapshots from this trajectory into a multi-copy ensemble model.
However, energy barriers of the simulation may prevent sampling of well separated backbone
conformations. Accurately modeling protein conformational heterogeneity, in particular when
the mainchain adopts distinct conformations for one or a number of contiguous residues,
remains a difficult task. The spatial overlap of electron density of multiple conformations and
the relatively similar profiles of branching mainchain and sidechains blur structural features
that can guide the human eye to reduce the large number of possible interpretations [9].

We have previously developed qFit [10], a method for automatically disentangling and
modeling alternative conformations and their associated occupancies, which are represented
by the variable q (for “occupancy”) in standard structure factor equations. The qFit algorithm
examines a vast number of alternative interpretations of the electron density map
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simultaneously. To propitiously explore a high-dimensional search space, conformational sam-
pling is guided by the anisotropy of electron density at the Cβ atom position, the nexus of back-
bone and sidechain in polypeptides [11]. For each slightly shifted Cβ atom position, qFit
samples sidechain conformations with a rotamer library [12] and uses inverse kinematics to
maintain backbone closure [9]. Finally, it selects a set of one to four conformations for each res-
idue that, collectively, optimally explain the local electron density in real space.

However, the anisotropy of the Cβ atom limits the exploration radius of qFit to model back-
bone conformational heterogeneity. While protein backbone motions are often associated with
large-amplitude conformational flexibility of surface loop regions, subtle motions can have
important ripple effects in closely packed areas via sidechain-backbone coupling. For example,
fast (ps-ns) backbone NH and sidechain methyl order parameters from spin relaxation experi-
ments are highly correlated with each other in flexible regions [13], suggesting that mainchain
and sidechain motions collectively sample conformational substates. For example, a backbone
backrub motion [14] repositions the Cα-Cβ bond vector in a plane perpendicular to the chain
direction, enabling the sidechain to access alternative, often sparsely populated rotamers that
otherwise would be energetically unfavorable. We previously linked coupled transitions
between alternative sidechain conformations, like “falling dominos”, to enzymatic turnover
and allostery [15, 16].

Additionally, qFit cannot model discrete conformational substates such as peptide flips,
which are>90° rotations of a peptide group while minimally perturbing the flanking residues.
Some structure validation methods highlight incorrect peptide orientations [17] and even auto-
mate subsequent model rebuilding [18]. However, rebuilding fits a correct, unique conforma-
tion rather than multiple well-populated alternative peptide conformations. Peptide flips can
have important functional roles in proteins. For example, flavodoxin undergoes peptide rota-
tions between functional states as part of the catalytic cycle [19], and peptide flips that convert
β-sheet to α-sheet have been linked to amyloid formation [20]. Furthermore, high-resolution
crystal structures have shown that alternative conformations related by a peptide flip may be
populated in the same crystal, although not as commonly as backrubs [14].

Modeling alternative conformations of glycine residues, which lack a Cβ atom, is also a cur-
rent limitation of qFit. The lack of a Cβ atom allows glycine residues to access otherwise for-
bidden regions of conformational space [11] and thereby fill special structural roles such as
capping helix C-termini [21]. In addition, the flexibility of glycines may contribute directly to
function at flexible inter-domain linkers or conformationally dynamic enzyme active sites [22].
Automatically modeling such cases as alternative conformations with qFit paves the way
toward understanding their contributions to protein function. Increasingly, new experiments
are being proposed which, combined with computational analysis, can extract the spatiotem-
poral ensemble from electron density maps [15, 23, 24].

Adding the capability to model peptide flips and alternative conformations for glycines will
increase our power to uncover conformational heterogeneity. While the number of sampled
conformations for glycines is modest owing to a missing side-chain, including peptide flips for
all amino acids adds significant computational complexity to the qFit algorithm. A powerful
quadratic programming algorithm lies at the core of qFit and is necessary to determine non-
zero occupancies for up to four conformations from among hundreds or even thousands of
candidate conformations for each residue. Even for modest sample sizes, around 500, the num-
ber of combinations of candidate conformations is enormous, exceeding 109. As more back-
bone motion is incorporated into qFit, the computational complexity increases, demanding a
parallelized approach to refinement on a residue by residue basis. Although this moves rebuild-
ing away from a single node towards a larger compute cluster, the combination of data-driven
sampling and selection has enabled qFit to automatically build multiconformer models that
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have illuminated intramolecular networks of coupled conformational substates [16] and the
effects of cryocooling crystals [25, 26]. Similar hybrid approaches using robotics sampling and
selection based on experimental NMR data are also being extended to nucleotide systems such
as the excited state of HIV–1 TAR RNA [27].

Here we introduce qFit 2.0, an updated version of the qFit algorithm with new capabilities
for modeling near-native backbone conformational heterogeneity in crystal structures. We first
describe the quadratic programming procedure that allows selection of a small set of conforma-
tions per residue that collectively account for the local electron density, and discuss its exten-
sion to fitting backbone atoms in addition to sidechain atoms. We then describe new
conformational sampling features of qFit 2.0, in particular glycine shifts and peptide flips.
Finally, we validate the updated algorithm with both synthetic and experimental X-ray data.
qFit 2.0 is freely available by webserver and source code is available for download at https://
simtk.org/home/qfit.

Results

Improved backbone sampling and selection in qFit
To automatically identify alternative backbone conformations, including peptide flips, we aug-
mented the sample-and-select protocol in qFit (see Fig 1 and Methods). Previously, conforma-
tions were sampled based on anisotropy of the Cβ atom and were selected based on the fit
between observed and calculated electron density for the sidechain (Cβ atom and beyond)
only. Alternative conformations for mainchain atoms were ultimately included in the multi-
conformer model only because they accommodated the best sidechain fits. In qFit 2.0, we now
select conformations based on the fit between observed and calculated electron density for the
sidechain atoms and also the backbone O atom. The O atom is an excellent yardstick for identi-
fying backbone conformational heterogeneity for two reasons. First, it is furthest from the Cα-
Cα axis so its density profile is somewhat isolated and is displaced most by rotations around
that axis [14]. Second, it has more electrons than other backbone heavy atoms, so is most evi-
dent in electron density maps. This change allows us to select peptide flips outside of α-helices
and β-sheets, where flips are prevented by steric and hydrogen-bonding constraints, then
directly select flipped conformations. This procedure is effective because the large movement
of the backbone O during a peptide flip leaves a major signature in the electron density.

Glycine modeling
Incorporating the backbone O atom also enhances the detection of less discrete backbone con-
formational changes. In particular, we now sample alternative glycine conformations based on
anisotropy of the electron density for the O atom, by analogy to the Cβ-driven sampling for all
other amino acids. This results in alternative glycine conformations that are dictated by their
own local electron density. After sampling, we select combinations of conformers from a pool
of candidates based on both sidechain and backbone O atoms for all amino acids, including
glycines. This addition results in greater potential to discover alternative conformations
throughout the protein and include additional conformational heterogeneity in the final multi-
conformer model.

Characterizing peptide flip geometry
The nullspace inverse kinematics procedure of qFit [9] naturally encodes backrub [14], crank-
shaft [28, 29], and shear [30, 31] motions (S1 Fig) where they are dictated by the anisotropy of
the electron density for the Cβ atom. However, this anisotropy cannot identify more discrete
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substates of the backbone, such as peptide flips. Peptide flips are large, ~180° rotations of a pep-
tide plane in protein backbone with minimal disturbance of adjacent peptide conformations.
Enumerating many peptide flip candidate conformations with the nullspace inverse kinematics
procedure would quickly lead to prohibitively large sample sizes. We therefore examined com-
mon geometries of discrete peptide flips to expedite sampling of discrete backbone substates in
qFit 2.0.

Steric interactions prevent arbitrary rotations of the peptide plane, much like sidechains
adopt preferred rotamer conformations. To identify plausible geometries for peptides relative
to a single input peptide, we examined cases where the peptide rotates by 90–180° around the
Cα-Cα axis. We identified 147 peptide flips modeled as alternative conformations in high-
quality structures. After filtering this set of peptide flips with structure validation criteria and
reserving some examples for a test set, we retained 79 examples that clustered around four
geometries (S1 Table, S1 Data). We observed that peptide flips often included rotation and
translation within the peptide plane such that the first Cαmoves “below” the Cα-Cα axis and
the second Cαmoves “above” it (from the view in Fig 2A and 2C). These in-plane movements
justify sampling geometries found in natural peptide flips in qFit 2.0 rather than, e.g., simply
rotating the peptide 180° around the Cα-Cα axis. The first two clusters, “simple down” (Fig 2A
and 2C, blue) and “tweaked down” (Fig 2A and 2C, red), feature a very nearly 180° rotation
around the Cα-Cα axis, but with different in-plane adjustments. By contrast, the second two

Fig 1. Flowchart of the qFit 2.0 algorithm. qFit can operate on each residue in the protein (orange boxes) in
parallel (1� n� N indices are for residues in the protein). Anisotropic refinement gives a thermal ellipsoid for
the Cβ (orange model), and refinement with occupancies set to 0 gives an omit map (purple model). These
inputs are combined, backbone translations and peptide flips are sampled (blue models), each backbone is
decorated with sidechain rotamers, and an MIQP is used to select 1–4 conformations for the residue.
Residues with consecutive multiple backbone conformations, called fragments (yellow boxes), are then
subjected to a second MIQP to trace compatible alternative backbone conformations across residues.
Residues and fragments are combined into an intermediate model. Finally, a Monte Carlo procedure is used
to adjust alternative conformation labels (“altloc” identifiers) to minimize steric overlaps, and the final model is
refined.

doi:10.1371/journal.pcbi.1004507.g001
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clusters, “left” (Fig 2B and 2D, green) and “right” (Fig 2B and 2D, brown), feature rotations
closer to 120°, but in opposite directions. Our dataset here is sufficient to propose plausible,
well-validated peptide flip geometries for sampling in qFit 2.0, and suggests that the four clus-
ters could also be used to inspire moves in protein design.

Structural context of flips
We found that the two “down” clusters were more common in tight turns between β-strands:
41–50% of flips in these clusters were found in turns, as compared to 0–14% for the other two
flip clusters (with a conservative definition of a turn; see Methods) (Table 1). The flip is nearly
always associated with a transition between Type I/I’ and II/II’ turns. The “left”/”right” clusters
were dispersed among many irregular structural contexts, but not α-helices or β-sheets. Across
the four clusters, the first residue of the peptide was a glycine 7.5% of the time, in line with the
general abundance of glycines in proteins (7–8%). However, the second residue of the peptide
was a glycine significantly more frequently (50%, p< 10−22). This was true for the “left”/
”right” clusters (21%, p< 0.05) and especially the two “down” clusters (Fig 2C) (64%,
p< 10−24). This may be in part because a glycine as the second residue of a peptide can lower

Fig 2. Geometry and distribution of peptide flips in training set. (A,B) Reference primary conformation
peptide (black) and four cluster centroids for secondary peptide conformations (colors), from the side (A) or
“top-down” (B). (C)Members from the training set segregate into two ~180° rotated clusters with different
translations in the peptide plan (blue vs. red). View from roughly the same angle as (A). (D)Other members
from the training set segregate into +120° and -120° rotated clusters (green vs. brown). View from roughly the
same angle as (B).

doi:10.1371/journal.pcbi.1004507.g002

Table 1. Peptide flip geometries aggregate into distinct clusters. Colors refer to Fig 2.

Cluster # of examples # (%) in tight turn # (%) with Gly as first residue # (%) with Gly as second residue

“tweaked down” (red) 26 13 (50%) 0 (0%) 16 (62%)

“simple down” (blue) 29 12 (41%) 4 (14%) 19 (66%)

“left” (green) 10 0 (0%) 1 (10%) 2 (20%)

“right” (brown) 14 2 (14%) 1 (7%) 3 (21%)

doi:10.1371/journal.pcbi.1004507.t001
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the flip transition energy [32]. These results generally agree with reports of flip-like conforma-
tional differences between the same tight turn in separate homologous structures [33].

Tests with synthetic datasets
To test these advances, we first explored synthetic datasets spanning resolutions from 0.9 to 2.0
Å with increasing B-factors as a function of resolution and Gaussian noise added to structure
factors (see Methods). We used the Top8000 peptide flip geometry cluster centroids, with the
alternative conformations at 70/30 occupancies for the “tweaked down” cluster and 50/50
occupancies for the other three clusters. Because qFit uses these geometries to sample peptide
flips, we expected it would be able to successfully identify each flipped alternative conformation
starting from the primary (labeled “A”) conformation at high-to-medium simulated resolution,
but less well at lower simulated resolution. Indeed, qFit 2.0 successfully finds the flipped con-
formations for most peptide flip geometry clusters across resolutions with a 92% success rate
overall; this rate drops only slightly with resolution from 0.9 to 2.0 Å (Fig 3). Since we rebuilt
the entire protein chain, we also assessed the performance on other residues. By contrast to the
true positive peptide flip results, the peptide flip and rotamer false positive rates remain quite
low across clusters and resolutions (Fig 3). These results indicate that qFit 2.0 is effective at
identifying peptide flip alternative conformations across a wide range of crystallographic reso-
lutions without introducing spurious conformations.

Tests with experimental datasets
Although tests with synthetic datasets offer insight into resolution dependence, a more direct
test of the usefulness of qFit 2.0 involves crystal structures with real data. We combined struc-
tures left out of the training set from the Top8000 peptide flip examples with a few more manu-
ally curated examples for a total of 15 test cases (Table 2). When comparing qFit 2.0 models to
rerefined original structures, Rfree is better for 7/15 cases and Rwork is better for 8/15 cases (S2
Fig). However, after rerefinement with automated removal and addition of water molecules to
allow the ordered solvent to respond to the new protein alternative conformations modeled by
qFit (see Methods), Rfree is better for the qFit 2.0 model for 10/15 cases and Rwork is better for
13/15 cases (Fig 4). The differences generally are small: the average ΔRfree is ~0.1%. Overall,
these results suggest that qFit 2.0 models explain experimental crystallographic data as well as
or better than traditional refinement protocols at a global structural level.

While global metrics are important, a major focus of the current work is correctly identify-
ing local alternative backbone conformations. To explore this aspect, we compared results
from qFit 2.0 to those from qFit 1.0 and original deposited structures for our test set (Table 2).
qFit 2.0 successfully models both flipped conformations in 14/18 (78%) cases. For example,
Val539-Gly540 in the Kelch domain of human KLHL7 is modeled with two alternative confor-
mations related by a peptide flip (1.63 Å, PDB ID 3ii7) (Fig 5A). qFit 1.0 fails to discover the
flip, resulting in significant difference electron density peaks (Fig 5B). By contrast, qFit 2.0
beautifully recovers both alternative conformations (Fig 5C). In another example, Asn42-Gly43
in carbohydrate binding domain 36 at high resolution (0.8 Å, PDB 1w0n) adopts flipped pep-
tide conformations—yet MolProbity flags geometry errors in the deposited structure that indi-
cate it re-converges too quickly, with alternative conformations for only the Asn42 and not
also Gly43 (Fig 5D). qFit 1.0 fails to capture the flip (Fig 5E). However, qFit 2.0 not only identi-
fies both peptide flip conformations for Asn42, but also includes split conformations for Gly43,
thereby repairing the covalent backbone geometry (Fig 5F). In both cases, the peptide flip and
glycine sampling enhancements in qFit 2.0 combine to model discrete backbone heterogeneity
as accurately as or even better than the original structure.
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Discovering new conformational heterogeneity from experimental
datasets
In addition to retrospective positive-control tests, we also looked prospectively for “hidden”
peptide flip alternative conformations that are unmodeled in existing structures. One such
example is Met519-Thr520 in RNA binding protein 39. In chain A of the room-temperature
structure (PDB ID 4j5o), the mFo-DFc difference electron density map around this peptide has
significant positive and negative peaks, indicating it is mismodeled as a single conformation
(Fig 6A). Other instances of this peptide—including in chain B of the room-temperature struc-
ture and both chains of the cryogenic structure—feature conformational diversity, much of
which may be related to crystal contacts; however, these conformations fail to account for the
room-temperature chain A mFo-DFc peaks (Fig 6B). However, using the room-temperature
data, qFit 2.0 identifies a peptide flip in this region, which repositions Met519 and flattens the
local difference density (Fig 6C). By contrast, it does not identify a peptide flip for this region
in either chain using the cryogenic data, which is in accord with previous reports that cryocool-
ing crystals can conceal or otherwise perturb conformational heterogeneity that is present at
room temperature [25, 26].

Fig 3. True vs. false positives with synthetic data. Peptide flip true positives = percent of peptide flips in the actual synthetic model that are present in the
qFit 2.0 model. Peptide flip false positives = percent of residues with a peptide flip in the qFit 2.0 model that are not in the actual synthetic model. Rotamer
false positives = percent of sidechain rotamers (as defined by MolProbity [12, 34]) in the qFit 2.0 model that are not in the actual synthetic model. True
positives in green; false positives in red. Peptide flips in solid lines; rotamers in dotted line. Data is averaged over all four synthetic datasets (corresponding to
the four peptide flip geometry clusters in Fig 2) and all three mainchain amplitudes are considered; see Methods.

doi:10.1371/journal.pcbi.1004507.g003
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In addition to selection of conformers based on fit to density for the backbone O atom for all
amino acids, qFit 2.0 also adds sampling based on this atom for glycine, enabling density-driven
backbone sampling for the most flexible amino acid. This facilitates modeling peptide flips in
which one of the constituent residues is a glycine, as seen in the examples above (Fig 5)—but
also opens the door to modeling less discrete glycine flexibility. For the 489 glycines across the
15 datasets in the test set (Table 2), qFit 1.0 cannot model more than a single conformation, but
qFit 2.0 models alternative conformations for 365/489 (75%) of glycines. The Cα displacements
average 0.28 Å and range from<0.01 Å up to 1.70 Å. Only 4 (4%) of these glycines were mod-
eled with alternative conformations in the original PDB structures. These results show that the
direct sampling and selection based on electron density for glycine backbone atoms in qFit 2.0
successfully identify conformational heterogeneity that was formerly unrecognized. For exam-
ple, a small, glycine-rich loop in PDB ID 3ie5 is modeled with a single conformation in the
deposited structure and qFit 1.0 model (Fig 7A). By contrast, qFit 2.0 recognizes the anisotropy
of the electron density for each of the three glycine O atoms in the loop, so models them with
alternative conformations that collectively shift the entire mini-loop region (Fig 7B).

Selecting conformers based on fit to density for the backbone O atom helps find alternative
conformations not only for glycines, but also more generally for other amino acids. In many
cases, this additional data-driven aspect to conformer selection drives the identification of sub-
tle, non-discrete backbone motions that are coupled to larger, discrete sidechain changes.
Indeed, for the 15 proteins in Table 2, qFit 2.0 shifts the Cαmore than does qFit 1.0 for 52% of
residues, but the reverse is true for only 20% of residues (the remaining residues are not moved
by either version) (Fig 8A). Furthermore, for 63% of the residues for which qFit 2.0 finds a new
sidechain rotamer that qFit 1.0 does not, qFit 2.0 also moves the Cαmore (Fig 8B). These
results imply that the backbone sampling by qFit 2.0 not only increases backbone heterogeneity
in and of itself, but also drives discovery of sidechain conformational heterogeneity. As one
specific example, Thr157 in cyclophilin A is modeled with alternative backbone and rotamer

Table 2. List of positive-control peptide flip test cases. Last column indicates whether or not qFit 2.0 found the peptide flip alternative conformations for
at least one of the three backbone amplitude parameters. Overall, 14/18 (78%) peptide flips were successfully identified.

PDB ID Resolution (Å) Chain Peptide Found flip?

1w0n 0.80 A 42–43 Y

1nki 0.95 A 53–54 Y

1nki 0.95 B 53–54 Y

1x9i 1.16 A 65–66 Y

1c9o 1.17 A 36–37 Y

1c9o 1.17 B 36–37 n

2c6z 1.20 A 227–228 n

2qd6 1.28 A 50–51 n

2qd6 1.28 B 150–151 Y

3n6z 1.30 A 177–178 Y

2c0c 1.45 A 44–45 n

3h0u 1.50 C 115–116 Y

3el5 1.60 A 50–51 Y

3el5 1.60 B 50–51 Y

3ii7 1.63 A 539–540 Y

3ie5 1.69 A 61–62 Y

2ozv 1.70 A 54–55 Y

3f7w 1.85 A 48–49 Y

doi:10.1371/journal.pcbi.1004507.t002
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conformations in the deposited structure (Fig 8A). qFit 1.0 fails to find the alternative rotamer
because it maintains a single backbone conformation (Fig 8B), but, driven by carbonyl O
anisotropy, qFit 2.0 identifies the alternative backbone conformations, allowing it to discover
the second rotamer (Fig 8C).

Newly identified peptide flips in the “flap” region of HIV protease
We also observed hidden peptide flips for the Ile50-Gly51 tight turn in the “flap” region of
HIV–1 protease. HIV–1 protease is a homodimer, with residue numbers often denoted by 1–99
and 1’-99’. The flap region consisting of residues 46–56 is an antiparallel β-sheet and tight turn
at the interface of the dimer (Fig 9A). In most of the hundreds of crystal structures of HIV–1
protease, the two tight turns (Leu50-Gly51 and Leu50’-Gly51’) adopt an asymmetric conforma-
tion, with one flap in a single type I conformation and the other in a single type II conformation.
However, NMR relaxation data suggest that these flips can undergo chemical exchange on a
slow (~10 μs) timescale in solution [35]. Mutational data also linked collective conformational
exchanges of these flips to catalytic rates [36]. In line with these solution studies, we noticed that

Fig 4. Multiconformer modeling with qFit results in similar or better crystallographic R-factors. Rwork and Rfree are plotted vs. PDB ID sorted from high
to low resolution. X’s indicate rerefined original structures and filled circles indicate qFit 2.0 models; both are after refinement with water picking.

doi:10.1371/journal.pcbi.1004507.g004
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for many HIV–1 protease crystal structures, the electron density maps actually reveal strong evi-
dence for alternative conformations related by dual peptide flips. For example, in one high-reso-
lution inhibitor-bound structure (PDB ID 3qih), the Leu50-Gly51 and Leu50’-Gly51’ flaps are
modeled with single asymmetric conformations, but strong positive mFo-DFc electron density
coincides with potentially flipped states (Fig 9B). Strikingly, qFit 2.0 automatically identifies
dual “flap flips”, suggesting the flaps actually populate two different asymmetric states (green vs.
purple in Fig 9C) in this particular inhibitor complex. More generally, this result suggests that

Fig 5. qFit 2.0 successfully identifies known peptide flips. (A-C) Val539-Gly540 in the Kelch domain of human KLHL7 at 1.63 Å (PDB ID 3ii7). 2mFo-DFc
electron density is contoured at 1.2 σ (cyan) and 2.5 σ (blue); mFo-DFc electron density is contoured at +3.0 σ (green) and -3.0 σ (red). (A) The deposited
model includes alternative conformations for this peptide, which are well justified by the electron density. (B) qFit 1.0 starting from single-conformer input fails
to find the second conformation, resulting in peaks in the difference density map (arrow). (C) qFit 2.0 finds both conformations, resulting in the disappearance
of the difference peaks. (D-E) Asn42-Gly43 in carbohydrate binding domain 36 at 0.8 Å resolution (PDB ID 1w0n). The Asn42 sidechain (left, darker green/
purple) points up out of the image so is visually truncated. In (E-F), 2mFo-DFc electron density is contoured at 1.5 σ (cyan) and 2.5 σ (blue); mFo-DFc
electron density is contoured at +3.0 σ (green) and -3.0 σ (red). (D) The deposited structure includes alternative conformations (green and purple) related by
a peptide flip, but re-converges too early at the Gly43 backbone N atom, resulting in >4 σ bond length (red and blue fans) and bond angle (red and blue
springs) outliers [34]. (E) qFit 1.0 fails to identify the flip, leaving significant difference density map features. (F) qFit 2.0 identifies the flip at Asn43 and also
correctly splits Gly43 into separate conformations, thereby flattening the difference map relative to qFit 1.0 and eliminating the covalent geometry errors in the
original structure.

doi:10.1371/journal.pcbi.1004507.g005

Fig 6. qFit 2.0 finds a hidden peptide flip at room temperature. (A)Met519-Thr520 in mouse RNA binding
protein 39 (RBM39) is modeled with just a single conformation in chain A of the 1.11 Å room-temperature
structure (PDB ID 4j5o, pink). There appear to missing unmodeled conformations based on mFo-DFc
difference electron density contoured at +3.0 σ (green) and -3.0 σ (red). 2mFo-DFc electron density is shown
contoured at 0.9 σ (cyan) and 2.5 σ (dark blue). (B) Although there is diversity for this region in chain B of the
asymmetric unit from this structure and in chains A and B from the 0.95 Å cryogenic structure (PDB ID 3s6e,
blue), none of the other instances explain the electron density at RT in chain A. There is also no clear
evidence for missing alternative conformations in these other instances. (C) In the RT qFit model, the peptide
has two alternative conformations (both in red) related by a flip. The new second conformation positions the
Met519 sidechain differently (down in this view). Collectively, these changes better explain the local electron
density.

doi:10.1371/journal.pcbi.1004507.g006
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these inhibitor-gating flaps in HIV–1 protease sample multiple conformations more often than
previously recognized across many inhibitor complexes, which may motivate further investiga-
tion of the effects that protein and inhibitor flexibility have on binding affinity, efficiency of cat-
alytic inhibition, and arisal of drug resistance in this biomedically important target.

Discussion
The ruggedness of protein energy landscapes leads to conformational heterogeneity even in
folded globular proteins. Evidence for these alternative conformations is remarkably prevalent
in high-resolution (<2Å) crystallographic electron density maps [6]. However, because these
alternative conformations are difficult and/or time-consuming to model manually using existing
graphics and refinement tools, they are underrepresented in the PDB [6]. qFit is a computational
approach to overcoming these problems, by automatically identifying “hidden” alternative con-
formations and using quadratic programming to select a parsimonious subset that collectively
best explains the diffraction data. Here we have demonstrated a new version of this algorithm,
called qFit 2.0, with several enhancements to handling flexible backbone—most notably, auto-
mated detection of discrete peptide flips and explicit fitting of backbone atoms for glycines.

qFit has previously captured different types of backbone motion that can occur in secondary
structure. For example, it correctly identifies the backrub motion [14] that helps Ser99 transi-
tion between sidechain rotamers in the active-site β-sheet network of CypA [15, 16], and also
identifies a previously hidden α-helix winding/unwinding or “shear”motion [14, 30] (S1 Fig).
However, qFit 2.0 can now model larger backbone motions in which the backbone change itself
is discrete, instead of inherently continuous but coupled to discrete sidechain rotamer changes.
Specifically, it models peptide flips, which occur outside of helices and sheets and involve dis-
crete jumps over a larger energetic barrier.

Peptide flips have important implications for understanding protein function. For example,
our results for HIV–1 protease (Fig 9) strongly suggest that conformational heterogeneity, in
particular peptide flips, may play underappreciated roles in protein-inhibitor complexes. Previ-
ously, molecular dynamics simulations identified a large-scale “curling”motion of these flaps
that is maintained by drug-resistance mutations and therefore seems important for substrate
access [37]. Although this motion is more dramatic than the peptide flaps at the tips of the
flaps that we observe, it underlines that flap flexibility—potentially across multiple length

Fig 7. qFit 2.0 identifies alternative glycine conformations. This small loop in the 1.69 Å structure of Hyp–
1 protein from St. John’s wort (PDB ID 3ie5) includes several glycines: 49, 50, and 52. (A) The deposited
structure (orange) depicts these glycines with single conformations. The qFit 1.0 model (red) does the same,
because it cannot sample alternative glycine conformations. (B) The qFit 2.0 model identifies alternative
conformations (green/purple) for the entire loop, including all three glycines, based on subtly anisotropic
backbone O atoms (arrows). 2mFo-DFc electron density contoured at 1.0 σ (cyan) and 3.0 σ (blue); mFo-DFc
electron density contoured at +3.0 σ (green) and -3.0 σ (red).

doi:10.1371/journal.pcbi.1004507.g007
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scales—is central to protease function and viral propagation. The peptide flip acts as a key con-
formational switch between type I/II turns, rearranging its environment beyond its immediate
sequence neighbors and enabling alternative sidechain conformations with implications for
function. However, the large number of unmodeled turns in HIV protease structures illustrates
the challenge of distinguishing alternative conformations in electron density maps, even at high
resolution. As an additional example which unfortunately lacks deposited structure factors, the
active-site Gly57-Asp58 peptide in C. beijerinckii flavodoxin adopts distinct peptide flip states in
concert with the oxidation state of the FMN prosthetic group [19]. The N137A mutation
removes artificial lattice contacts that otherwise influence the conformation of the Gly57-Asp58
peptide, which results in a mixture of these peptide conformations simultaneously populated in
the crystal; this suggests these multiple flip states may also coexist in solution [19].

Beyond the specific improvements to peptide flips, qFit 2.0 now fits conformations for each
residue based on both sidechain (beyond Cβ) and backbone (carbonyl O) atoms. Although we
originally envisioned this change for modeling glycines, we observed that it results in dramati-
cally more extensive backbone conformational heterogeneity across the protein (Fig 8). R-

Fig 8. Extra backbone heterogeneity in qFit 2.0 helps discover new sidechain heterogeneity. (A)
Histogram of difference in maximumCα displacement across all combinations of alternative conformations
between qFit 2.0 and qFit 1.0 for the test set. Vertical dotted line at 0 difference. (B)MaximumCα
displacements for qFit 2.0 vs. 1.0 for residues with a newly discovered sidechain rotamer in the qFit 2.0 model
but not in the qFit 1.0 model. Many of these residues fall above the diagonal line, meaning the Cαmoves
more in the qFit 2.0 model than in the qFit 1.0 model. (C-D) Thr157 in cyclophilin A at room temperature (PDB
ID 3k0n). 2mFo-DFc electron density is contoured at 0.5 σ (cyan) and 3.0 σ (blue); mFo-DFc difference
electron density is contoured at +3.1 σ (green) and -3.1 σ (red). (C) The deposited structure has alternative
rotamers that were correctly manually modeled. (D) qFit 1.0 does not move the backbone and misses the
alternative rotamer, as evidenced by a peak of +mFo-DFc density (arrow). (E) qFit 2.0 does move the
backbone (note especially the backbone carbonyl displacement), and successfully identifies the alternative
rotamer.

doi:10.1371/journal.pcbi.1004507.g008
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factors are similar or better (Fig 4), suggesting the new models with more heterogeneity are at
least as good an explanation of the experimental data. Notably, these new backbone shifts drive
discovery of many more alternative sidechain rotamers (Fig 8). Our results suggest that side-
chain and backbone degrees of freedom in proteins are tightly coupled, in agreement with pre-
vious reports that even subtle backbone motions can facilitate rotamer changes [14], open up
breathing room for natural mutations [38], and expand accessible sequence space in computa-
tional protein design [31, 39].

Future work will investigate an armamentarium of methods for modeling larger backbone
conformational change in qFit, including helix shear motions [30], adjustments of entire α-
helices [40, 41], correlated β-sheet flexing [28], automated loop building algorithms such as
Xpleo [9], and pre-knowledge of conformational differences between homologous structures.
While these future steps will move us closer to capturing the full hierarchy of protein confor-
mational substates [42], they will also dramatically increase the computational cost of auto-
mated multiconformer model building. Many aspects of qFit are parallelizable; however, the
total computational cost for reproducing the data in this manuscript is approximately 105 CPU
hours. As cloud-computing capabilities of 108 CPU hours can now be leveraged for pure simu-
lation data [43], we envision that marshalling similar computational capabilities will become
increasingly important for analysis of experimental X-ray data. Such data-driven computa-
tional approaches to studying the dynamic relationship between protein structure and function
will be especially powerful when applied to series of datasets in which the protein is subjected
to perturbations that modulate conformational distributions, such as ligand binding or temper-
ature change [23].

Materials and Methods

Learning peptide flip geometries
To define possible relative geometries between flipped peptide conformations, we searched for
trustworthy peptide flips modeled as alternative conformations in the Top8000 database. This
database contains ~8000 (7957) quality-filtered protein chains from high-resolution crystal
structures, each with resolution< 2 Å, MolProbity score [34]< 2, nearly ideal covalent

Fig 9. Hidden unmodeled peptide flips in the inhibitor-gating “flaps” of HIV–1 protease. (A) In the 1.39 Å structure of a mutant of HIV–1 protease bound
to a novel inhibitor (PDB ID 3qih), the Ile50-Gly51 tight turn interacts with the dimer-related copy of itself, Ile50’-Gly51’ (boxed region). Chain A in orange,
chain B in red. The inhibitor (sticks) binds in two overlapping poses immediately adjacent to these flaps. (B) This dimer interface, viewed as if from above in
(A), is asymmetric in the deposited structure: both copies of the peptide point downwards in this view. However, positive difference electron density (arrows)
suggest unmodeled conformations. (C) qFit 2.0 models this region with coupled asymmetric peptide flips, such that both copies of the peptide point down
(~70%, green) or both point up (~30%, purple) in this view. The multiconformer model has diminished difference electron density peaks, suggesting it is a
better local fit to the data. Residual difference peaks may reflect unmodeled partial-occupancy waters that are mutually exclusive with the new protein
alternative conformations. 2mFo-DFc contoured at 1.2 σ (cyan) and 3.0 σ (blue); mFo-DFc contoured at +3.0 σ (green) and -3.0 σ (red).

doi:10.1371/journal.pcbi.1004507.g009
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geometry, and<70% sequence identity to any other chain in the database [44]. We searched
the Top8000 for peptides with carbonyl C-O bonds pointed away from each other (O-O
distance> C-C distance + 1 Å) and rotated by at least 90°, and for which both flanking Cα
atoms reconverged to< 1.5 Å. Although peptide rotations of< 90° also occur, they occur
more often in irregular loop regions, have less well-converged backbone for flanking residues,
and are generally more diverse and difficult to simply categorize. By contrast, in this study we
investigate the class of localized peptide rotations with well-converged backbone for both
flanking residues. These are either very small rotations, or large flips with a rotation nearer to
180°—the latter being the focus here. To identify test cases for qFit 2.0, we curated the resulting
dataset by removing examples with more than two alternative peptide conformations; a cis
rather than trans conformation for either state; or obvious errors based on steric clashes,
strained covalent geometry, or torsional outliers fromMolProbity [34]. This resulted in 104
examples, from which we kept a randomly selected 79 for a geometry training set (S1 Table).
We combined a subset of the remaining 25 peptide flips with a few other known examples for a
test set of 18 examples (Table 1). The resolution range is 0.92–1.95 Å for the training set and
0.80–1.85 Å for the test set.

Next we characterized the geometry of peptide flips by clustering the coordinates of the
flipped alternative conformation (labeled “B”) in the training set after superimposing onto a
reference peptide. We used the k-means algorithm with RMSD between the five heavy atoms
of the peptide backbone (Cα1, C1, O1, N2, and Cα2) for different values of k. We selected
k = 4 because we observed cluster centroids with approximately 180°, +120°, and -120° rota-
tions and for k> 4 no other significantly different rotations were identified. Notably, all four
cluster centroids featured translations of the flanking Cα atoms of>0.2 Å, and as much as
>0.9 Å for one cluster (“tweaked down”, red in Fig 2). The transformation matrices relating
the flipped peptide cluster centroids to the reference peptide were used in qFit 2.0 to sample
plausible alternative conformations, with subsequent refinement adjusting the atomic positions
away from the centroid geometry.

Tight turns and glycine enrichment
We defined tight turns as having a mainchain-mainchain hydrogen bond between i–1 carbonyl
C = O and i+2 amide N-H that was detectable by the program Probe [45]. This definition is
somewhat conservative; several more examples also were visually similar to tight turns. Enrich-
ment of glycines at the two positions involved in a peptide flip was assessed for different pep-
tide flip clusters within the training set relative to a large set of 337 randomly selected
structures containing 6,092 total glycines out of 78,094 total amino acid residues. The statistical
significance of this enrichment was assessed using a one-tailed Fisher’s exact test based on the
hypergeometric distribution [46].

qFit
qFit part 1: Preparing each residue for qFit. qFit exhaustively examines a vast number of

interpretations of local electron density, and deterministically selects a small ensemble that
optimally explains the density. The method starts from an initial single-conformer model. The
occupancies of all atoms in a residue, k, beyond the Cβ atom are set to zero with phenix.
pdbtools, and the model is refined with phenix.refine. Refinement uses anisotropic B-factors
for all residues if the resolution is better than 1.45 Å, or just for residue k otherwise. Finally, all
atoms in residue k beyond the Cβ atom are removed. These steps result in two inputs to qFit:
(1) an omit map and (2) starting coordinates with an anisotropic tensor for the Cβ atom.
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qFit part 2: Peptide flips and backbone sampling. Next, the peptide from residue k to k
+1 is aligned to the centroids identified from clustering the Top8000 dataset (see above). We
calculate local coordinate frames for the peptide and cluster centers by orthogonalizing the
Cαi-Cαi+1 and Cαi-Oi vectors and taking their cross-product. Each centroid conformation is
then transformed onto the starting peptide using a homogeneous coordinate transformation,
resulting in a candidate flipped alternative conformation.

Peptide flips do not occur in canonical secondary structure due to steric constraints, so qFit
2.0 does not attempt them in helices and sheets, as detected by the CCP4 MMDB library [47].
This both avoids false positives and affords a computational speedup by reducing combinator-
ics in the selection steps (see below).

Next, for each residue k, a fragment of length 7 centered on residue k is extracted. For each
candidate conformation (one unflipped plus four flipped), the Cβ atom is moved along the
major and minor axes of the ellipsoid (six total directions) by a distance determined by the
ellipsoid eigenvectors and a scale value provided by the user. Here we used 0.1, 0.2, and 0.3 for
this scale value, and 0.05 for the optional value for random additions to scale. For glycines,
which lack a Cβ atom, the backbone O atom is used to define the anisotropic ellipsoid. To pre-
serve the exact geometry of the fragment, we use inverse kinematics to deform the fragment.
The gradient of the distance function is projected onto the nullspace spanned by the dihedral
degrees of freedom of the fragment [9, 10]. These motions further position backbone atoms to
accommodate rotameric sidechain conformations.

qFit part 3: Sidechain sampling. We sample sidechain conformations from the “penulti-
mate” rotamer library [12]. For each rotamer for small sidechains (Asn, Asp, Cys, Iso, Leu, Pro,
Ser, Thr, Val), a 40° neighborhood of each rotameric χ dihedral angle, starting at -20°, is sam-
pled in 10° increments on each of the 35 backbone conformations. To avoid a combinatorial
explosion, large sidechains (Arg, Glu, Gln, His, Lys, Met, Phe, Trp, Tyr) are sampled hierar-
chically. First, for each rotamer the backbone and first dihedral angle are sampled similarly to
small sidechains. A larger neighborhood of 50° is sampled in 4.5° increments to avoid missing
conformations that are initially suboptimal but can accommodate better fits for subsequent χ
angles. This set is then subjected to the selection procedure, which returns a handful of confor-
mations that fit the density up to the Cγ atom. These selected conformations form the basis for
sampling the next χ angle using the same parameters. This procedure is repeated until the
entire sidechain is built.

qFit part 4: Conformer selection. For each of the N conformations sampled for each resi-
due, we calculate an electron density map rc

i . We scale the observed electron density map ρo to
ρc. We then subject the weighted sum of rc

i to a quadratic program (QP) to determine a vector
of occupancies wT that minimizes the least squares residuals with respect to the observed elec-
tron density:

min
w

kro �
X

i

wir
c
ik2

s:t: wi � tdmin
i ¼ 1; . . . ; n

0 �
X

i

wi � 1

The residuals are calculated over regularly spaced voxels that are within a resolution-depen-
dent radius r of any of the sidechain (Cβ and beyond) or carbonyl O atoms. The radius r (in Å)
is determined by r = 0.7 + (d—0.6)/3.0 if d< 3.0Å, and 0.5 d if d� 3.0Å, where d is the resolu-
tion in Å.
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The vast number of conformations results in a system that is generally underdetermined.
We therefore enforce sparsity of the solution by introducing a resolution-dependent threshold
constraint 0 < tdmin

� 1 for the occupancies; i.e.,wi � tdmin
for all i. The threshold constraint

prevents overfitting by suppressing arbitrarily small occupancies that model noise. Together
with the constraint that the total occupancy cannot exceed unity, the threshold also enforces a
cardinality constraint; i.e., the number of non-zero occupancies is bounded by the integer part

of ðtdmin
Þ�1. In effect, the threshold constraint enforces selection of an optimal subset in the

regression. Note that the two constraints imply wi 2 f0g [ ½tdmin
; 1�. Introducing binary vari-

ables zi2{0,1}, we can rewrite the optimization problem as a mixed integer quadratic program
(MIQP):

min
w

kro �
X

i

wir
c
ik2

s:t: tdmin
zi � wi � zi; i ¼ 1; . . . ; n

zi 2 f0; 1gn

0 �
X

i

wi � 1

This optimization problem belongs to the class of convex quadratic problems, for which
solvers can find a globally optimal solution. An MIQP is NP-hard. We therefore pre-fit con-
formers with QP, and subject all conformations with non-vanishing occupancies to MIQP.
While in theory this no longer guarantees an optimal solution, practice tests on small sets of
conformers did not show an effect of pre-fitting.

qFit part 5: Putting the model back together. Assembling a consistent, multiconformer
model from individually fitted residues requires two steps. First, backbone heterogeneity can
extend over multiple, consecutive residues, each with slightly different occupancies and/or
numbers of conformers. To synchronize the number of conformers and their occupancies over
a fragment of length K residues consisting of consecutive backbone multiconformers, we again
rely on conformational selection by MIQP. We enumerate all possible connections between all

conformations Ci of residues i = 1,. . .,K to obtain Cf ¼
YK

i¼1

Ciconformations to model this frag-

ment. We subject all Cf conformations to the MIQP, which selects a parsimonious ensemble of

at most ðtdmin
Þ�1 conformations based on optimal fit to the observed electron density, each with

identical occupancy for all atoms in the fragment. Note that Cf can be quite large, even for
modestly long fragments. To avoid a combinatorial explosion, for long fragments we imple-
mented a divide-and-conquer procedure that fits segments of each fragment with MIQP. The
fitted segments are then combinatorially recombined and again subjected to MIQP to obtain
the final set of conformations for the fragment. The peptide-bond geometry of the output
model at this stage of qFit can be distorted. A later refinement stage with phenix.refine corrects
the geometry.

Second, conformations encoding collective motions are often mutually exclusive.
In crystal structures, each internally consistent set of residues is labeled with an alternative

conformation or “altloc” identifier—a capitalized letter (“A”, “B”, etc.) for multiple conforma-
tions or a blank space (““) for a single conformation. However, the initial model from the pre-
ceding steps in the qFit pipeline has random labels. To identify internally consistent labels, we
use a simple downhill Monte Carlo optimization protocol. The program Label minimizes a
simple Lennard-Jones score by randomly swapping labels between conformations and
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accepting the change if the score improves. This is repeated 10,000 times per trial over 10 trials,
and the model with the best score is used for subsequent steps.

To finalize the model, we first refine the relabeled model with phenix.refine. Next, we
remove conformations that are now indistinguishable from other conformations within pre-
dicted coordinate error, and reset occupancies to sum to unity for each atom. Finally, we refine
positions, occupancy, and B-factors again, using anisotropic B-factors if the resolution is better
than 1.45 Å. Manual modifications are likely to further improve both Rfree and model quality
as measured by MolProbity score.

Hydrogen treatment
Hydrogens were placed at nuclear positions for Label in qFit 1.0 and at electron-cloud positions
for Label in qFit 2.0. Correspondingly, for Label in qFit 2.0, hydrogen van der Waals radii were
taken from the new values in Reduce [48], which are intended to match those used in PHENIX.
Hydrogens were absent for all other steps in qFit, including the final refinement step; however,
the user is encouraged to add hydrogens to the final qFit model for their protein of interest and
proceed to other analyses. Future work will update programs for downstream analysis of qFit
models such as CONTACT [16] to also use electron-cloud instead of nuclear hydrogen
positions.

Generating synthetic datasets
To generate synthetic datasets for testing qFit, we used the protein chains containing the four
peptide flip cluster centroids (3mcw B 101–102, 2ior A 159–160, 2g1u A 51–52, 3g6k F 172–
173). We first used phenix.pdbtools to convert any anisotropic B-factors to isotropic, added 10
Å2 to each B-factor per Å of resolution worse than the original structure’s resolution to roughly
simulate the general rise of B-factors with resolution, and placed the chain in a P1 box that
comfortably encompassed it. Next we used phenix.fmodel to calculate structure factors (with
the “k_sol = 0.4” and “b_sol = 45” bulk solvent parameters, and also generating 5% R-free
flags) and added 10% noise in complex space with the sftools utility in CCP4 [47]. This process
was repeated for every simulated resolution from 0.9 to 2.0 Å with a 0.1 Å step size.

Evaluating true and false positives
qFit uses an input parameter (MC_AMPL) to scale the magnitude of movements of the Cβ (or
O for glycines) along the directions dictated by its thermal ellipsoid. As in previous work [10,
16, 26], we explored multiple values for this parameter: 0.1, 0.2, and 0.3. For evaluating results
such as true vs. false positive peptide flips and rotamers here, we considered all three resulting
qFit models for each dataset. This is sensible because an end user of qFit 2.0 will likely repro-
duce this same protocol (with a few MC_AMPL values) and thus have a choice of models to
use for developing insights into conformational heterogeneity and its connection to function.
For other analyses, we used the minimum-Rfree qFit model model unless otherwise noted.

Re-refinement with water picking
To compare R-factors between the deposited models and qFit 2.0, we finalized both models
with phenix.refine for 10 macro-cycles using the same parameters, including the
“ordered_solvent = true” flag. The resulting R-factors for qFit 2.0 models are similar or slightly
better (Fig 4).
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Programs and databases
PHENIX version 1.9–1692 (the most recent official release) [49] was used for all steps of both
qFit 1.0 and 2.0. Coordinates and structures factors were obtained from the Protein Data Bank
[50]. qFit uses the following libraries: IBM’s ILOG CPLEX solver for QP and MIQP, which is
available free of charge for academic use, and LoopTK for inverse kinematics calculations [51].
qFit is implemented in parallel; it is capable of sampling and evaluating conformations for each
residue as an independent job on a Linux cluster. We have implemented job management for
qFit on both Oracle/Sun Grid Engine and LSF Platform.

Supporting Information
S1 Fig. qFit detects a shear backbone motion in a room-temperature crystal structure of
cyclophilin A. (A) Residues 142–145 in CypA are modeled with a single conformation in the
single-conformer structure (PDB ID 3k0n). The model is a reasonable fit to the 2mFo-DFc
electron density contoured at 1.0 σ (cyan) and 2.5 σ (dark blue), which is slightly anisotropic
for the central carbonyl oxygen. (B) The multiconformer qFit model, on the other hand,
includes three alternative conformations with backbones related by a shear-like motion to
explain the electron density. Each shear end-state (greens vs. purple) is allocated about 50%
occupancy. The multiconformer model adds a second rotamer (purple) in addition to the origi-
nal rotamer (greens) for Glu143 (left-hand-side of panel) and sweeps the Arg144 sidechain
sideways (right-hand-side of panel).
(TIFF)

S2 Fig. Multiconformer modeling with qFit does not result in better crystallographic R-fac-
tors before solvent picking. Rwork and Rfree are plotted vs. PDB ID sorted from high to low res-
olution. X’s indicate original structures rerefined without automated addition and removal of
water molecules, and filled circles indicate qFit 2.0 models.
(TIFF)

S1 Table. List of peptide flip examples from Top8000 used as training set.
(XLS)

S1 Data. Peptide cluster center geometries.
(tgz)
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